庖丁巧解牛知识·巧学直线参数方程的形式过定点M0(x0,y0)、倾斜角为α的直线l的参数方程为(t为参数),我们把这一形式称为直线参数方程的标准形式,其中t为参数.直线参数方程中参数t的几何意义:表示直线l上以定点M0为起点,任意一点M(x,y)为终点的有向线段的数量M0M.联想发散很明显,我们也可以把参数t理解为以M0为原点,直线l向上的方向为正方向的数轴上点M的坐标,其长度单位与原直角坐标系的长度单位相同.t是直线上有向线段的数量,当α(0,π)∈时,M在M0的上方时,t>0;M在M0的下方时,t<0;M与M0重合时,t=0.当α=90°时,(t为参数)可化为x=x0,因此在使用时,不必研究直线斜率不存在时的情况.特别地,若直线l的倾角α=0时,直线l的参数方程为当t>0时,点M在点M0的右侧;当t=0时,点M与点M0重合;当t<0时,点M在点M0的左侧.深化升华若直线的参数方程为一般形式(t为参数),可把它化为标准形式:(t′为参数),其中α是直线的倾斜角tanα=,此时参数t′才有如前所说的几何意义.同一直线方程的参数方程有多种形式,如(t为参数)和(t为参数)表示同一条直线,但后者参数t没有几何意义.直线的参数方程(t为参数)只有当a2+b2=1且b≥0时,参数t才有意义.对于(t为参数),其中b≥0,若a>0,则直线的倾斜角α为锐角;若a<0,则直线的倾斜角α为钝角;若a=0,则直线的倾斜角α为直角.问题·探究问题1在解决某些问题时可以使用某些已知的结论或公式,正确使用这些结论可以简化运算,使问题的解决更快捷.那么对于直线的参数方程又有哪些常用的结论呢?探究:根据直线参数方程中参数的几何意义,设直线l的参数方程为(t为参数),直线l上点A,B对应的参数分别为tA、tB,则(1)A、B两点之间的距离为|AB|=|ta-tb|,特别地,A、B两点到点M0的距离分别为|tA|、|tB|;(2)A、B两点的中点所对应的参数为,若点M0是线段AB的中点,则tA+tB=0,反之亦然;(3)若直线上的点C所对应的参数为tC,C点分所成的比为λ,则tc=.问题2通过学习直线参数方程后我们了解到:直线参数方程的一般形式中的参数不具有几何意义,只有标准形式中的参数才具有一定的几何意义.那么直线的一般参数方程怎样才能转化为标准的参数方程呢?探究:给出直线的非标准式参数方程(t为参数),根据标准式的特点,参数t的系数应分别是倾斜角的正弦和余弦值,根据三角函数的性质知,其平方和为1,所以可以化为(t为参数),再近一步令cosα=,sinα=,根据直线倾斜角的范围让α在[0,π)范围内取值,并且把t看成相应的参数t,即得标准式的参数方程(t为参数).由转化的过程可...