互动课堂重难突破一、平行线分线段成比例定理1.定理:三条平行线截两条直线,所得的对应线段成比例.图1-2-12.符号语言表示:如图1-2-1所示,abc,∥∥则=.3.定理的证明:若是有理数,则将AB、BC分成相等的线段,把问题转化为平行线等分线段,达到证明的目的,再推广到整个实数范围,其完整的推广过程还需到高等数学中实现.4.定理的条件:与平行线等分线段定理相同,它需要a、b、c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它们必须与已知的平行线a、b、c相交,即被平行线a、b、c所截.平行线的条数还可以更多.5.定理比例的变式:对于3条平行线截两条直线的图形,要注意以下变化(如图121):如果已知是a∥b∥c,那么根据定理就可以得到所有的对应线段都成比例,如=,=等,可以归纳为=,=,=等,便于记忆.二、平行线分线段成比例定理的推论1.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.2.符号语言表示:如图1-2-2所示,a∥b∥c,则==.图1-2-23.推论的证明:直接利用平行线分线段成比例定理,应当注意的是一定要将线段对应好,实际应用时,通常图形中不会出现三条平行线,此时要注意正确识别图形,如图1-2-3.图1-2-3三、刨根问底问题1平行线分线段成比例定理与平行线等分线段定理有何区别与联系?怎样正确使用平行线分线段成比例定理?探究:我们学习的平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.(如图1-2-4,若l1∥l2∥l3,AB=BC,则DE=EF)图1-2-4图1-2-5平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图1-2-5,若l1∥l2∥l3,则=.比较这两个定理可知:当截得的对应线段成比例,比值为1时,则有截得的线段相等,即当==1时,则有AB=BC,DE=EF,因此平行线分线段成比例定理是平行线等分线段定理的扩充,而平行线等分线段定理是平行线分线段成比例定理的特例.平行线等分线段定理是证明线段相等的依据,而平行线分线段成比例定理是证明线段成比例的途径.在使用平行线分线段成比例定理时,要特别注意“对应”的问题,如图1-2-5中的线段AB、BC、AC的对应线段分别是DE、EF、DF,由平行线分线段成比例定理有=,=,=.根据比例的性质,还可以得到=,=,=.为了掌握对应关系,可根据对应线段的相对位置特征,把=说成是“上比全等于上比全”,把=说成是“左比右等于左比右”,使用这种形象化语言,不仅能够按要求或需要准确地写出比...