庖丁巧解牛知识·巧学一、椭圆的参数方程中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情况:(1)椭圆=1(a>b>0)的参数方程是(θ为参数,且0≤θ<2π).(2)椭圆=1(b>a>0)的参数方程是(θ为参数,且0≤θ<2π).以(x0,y0)为中心,半长轴为a,半短轴为b,焦点连线平行于x轴的椭圆的参数方程是(θ是参数).方法点拨在利用研究椭圆问题时,椭圆上的点的坐标可记作(acosθ,bsinθ).二、双曲线的参数方程中心在原点,坐标轴为对称轴的双曲线的参数方程有以下两种情况:(1)双曲线=1的参数方程为(φ为参数);(2)双曲线=1的参数方程为(φ为参数).以(x0,y0)为中心,半实轴为a,半虚轴为b,焦点连线平行于x轴的双曲线的参数方程为(θ为参数,0≤θ<2π,θ≠,).方法点拨在利用研究双曲线问题时,双曲线上的点的坐标可记作(asecφ,btanφ).三、抛物线的参数方程顶点在坐标原点的抛物线参数方程:抛物线y2=2px(p>0)的参数方程:(p>0,t为参数,t∈R),其中参数t可视为该抛物线y2=2px(p>0)上任一点P与抛物线顶点O所连直线OP的斜率的倒数.设抛物线上任一点P(x,y),则t=.以(x0,y0)为顶点,焦参数为p,对称轴平行于x轴的抛物线的参数方程是(t是参数),其中参数t是抛物线上任意一点与顶点连线的斜率的倒数.辨析比较抛物线y2=-2px(p>0)的参数方程:x=(p>0,t为参数,t∈R);抛物线x2=2py(p>0)的参数方程:(p>0,t为参数,t∈R);抛物线x2=-2py(p>0)的参数方程:(p>0,t为参数,t∈R).问题·探究问题1举一些现实生活中的例子,说明圆锥曲线的参数方程同圆锥曲线的普通方程相比有何特点,圆锥曲线的参数方程在解题中有什么样的作用?探究:弹道曲线是炮弹飞行的轨迹.在军事上,当炮弹发射出去后,需要知道各个时刻炮弹的位置,很显然相应的位置与炮弹发射出去后的时间有着密切的关系,通过建立适当的坐标系,选择时间作为参数,很容易建立起相应的参数方程,这比根据已知条件直接去找炮弹飞行的普通方程方便得多,并且根据实际军事需要,这样也容易知道各个时刻炮弹所处的位置,有利于为现代战争赢得时间.这正是抛物线的参数方程在实际生活中的具体应用.当然圆锥曲线的参数方程的应用还不止这些,再比如:在研究人造地球卫星的运行轨道时,常常也用其参数方程的形式来予以研究.问题2在使用圆锥曲线的参数方程解题时,需要能够正确地把普通方程转化为参数方程.那么,在把普通方程转化为参数方程时,是否会出现不同的结果呢?探究:会.例如:椭圆=1的参数方程可以是x=的形...