互动课堂重难突破一、射影所谓射影,就是正投影.其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影.一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这条直线上的正投影.如图1-4-1,AB在AC上的射影是线段AC;BC在AC上的射影是点C;AC、BC在AB上的射影分别是AD、BD,这样,Rt△ABC中的六条线段就都有了名称,它们分别是:两条直角边(AC、BC),斜边(AB),斜边上的高(CD),两条直角边在斜边上的射影(AD、BD).图1-4-1二、直角三角形的射影定理由于角的关系,图1-4-1中,三个直角三角形具有相似关系,于是Rt△ABC的六条线段之间存在着比例关系.△ACDC∽△BD,有=,转化为等积式即CD2=AD·BD;△ACD∽△ABC,有=,转化为等积式即AC2=AB·AD;△BCD∽△BAC,有=,转化为等积式即BC2=BA·BD.用语言来表述,就是在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.这一结论常作为工具用于证明和求值.如图1-4-2,在Rt△ABC中,∠ACB=90°,CD是AB上的高.已知AD=4,BD=9,就可以求CD、AC.由射影定理,得CD2=AD·BD=4×9=36.因为边长为正值,所以CD=6,AC2=AD·AB=4×(4+9)=52.所以AC=213.我们还可以求出BC、AB,以及△ABC的面积等.图1-4-2三、刨根问底问题1在直角三角形中,我们已经学过三边之间的一个重要关系式,如图1-4-2,在Rt△ABC中,∠ACB=90°,那么AC2+BC2=AB2,这一结论被称作勾股定理,同样是在直角三角形中,勾股定理和射影定理有什么联系?如何说明这种联系?探究:如图1-4-2,在RtA△BC中,∠ACB=90°,CD是AB上的高.应用射影定理,可以得到AC2+BC2=AD·AB+BD·AB=(AD+BD)·AB=AB2.由此可见,利用射影定理可以证明勾股定理.过去我们是用面积割补的方法证明勾股定理的,现在我们又用射影定理证明了勾股定理,而且这种方法简洁明快,比面积法要方便得多.将两者结合起来,在直角三角形的六条线段中,应用射影定理、勾股定理,就可从任意给出的两条线段中,求出其余四条线段的长度.问题2几何图形是最富于变化的,直角三角形更是如此,但不管怎样变化,其基本图形体现的规律却是相同的,如射影定理的基本图形,这时,从复杂图形中分离出基本图形,就成为解决问题的关键.那么从复杂图形中分离出基本图形有什么窍门吗?能举例说明吗?探究:在图形的变化中熟悉并掌握射影定理的使用方法,有助于快速发...