直线与圆的方程的应用【教学目标】(1)理解直线与圆的位置关系的几何性质;(2)利用平面直角坐标系解决直线与圆的位置关系;用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.(3)会用“数形结合”的数学思想解决问题.让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.【重点难点】教学重点:求圆的应用性问题.教学难点:直线与圆的方程的应用.【课时安排】1课时【教学过程】导入新课如图1,某城市中的高空观览车的高度是100m,图1在离观览车约150m处有一建筑物,某人在离建筑物100m的地方刚好可以看到观览车,你根据上述数据,如何求出该建筑物的高度?要解决这个问题,我们继续研究直线与圆的方程的应用,教师板书课题:直线与圆的方程的应用.推进新课新知探究提出问题①你能说出直线与圆的位置关系吗?②解决直线与圆的位置关系,你将采用什么方法?③阅读并思考教科书上的例4,你将选择什么方法解决例4的问题?④你能分析一下确定一个圆的方程的要点吗?⑤你能利用“坐标法”解决例5吗?活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,发散思维.①学生回顾学习的直线与圆的位置关系的种类;②解决直线与圆的位置关系,可以采取两种方法③首先考虑问题的实际意义,如果本题出在初中,我们没有考虑的余地,只有几何法,在这里当然可以考虑用坐标法,两种方法比较可知哪个简单;④回顾圆的定义可知确定一个圆的方程的条件;⑤利用“坐标法”解决问题的关键是建立适当的坐标系,再利用代数与几何元素的相互转化得到结论.讨论结果:①直线与圆的位置关系有三类:相交、相切、相离.②解决直线与圆的位置关系,将采用代数和几何两种方法,多数情况下采用圆心到直线的距离与半径的关系来解决.③阅读并思考教科书上的例4,先用代数方法及坐标法,再用几何法,作一比较.④你能分析一下确定一个圆的方程的要点,圆心坐标和半径,有时关于D、E、F的三个独立的条件也可.⑤建立适当的坐标系,具体解法我们在例题中展开.应用示例例1讲解课本4.2节例4,解法一见课本.图2解法二:如图2,过P2作P2HOP.⊥由已知,|OP|=4,|OA|=10.在RtAOC△中,有|CA|2=|CO|2+|OA|2设拱圆所在的圆的半径为r,则有r2=(r-4)2+102....