课堂导学三点剖析一、要正确合理使用两个计数原理【例1】某国际旅行社共有9名专业导游,其中6人会英语,4人会日语,若在同一天要接待5个不同的外国旅游团队,其中有3个队要安排会英语的导游,2个队要安排会日语的导游,则不同的安排方法共有_____________种.(用数字作答)解析:可从那名既会英语,也会日语的人(记为甲)出发进行分类,按照甲是否被安排到需要英语的旅游团可分两类:第一类,甲被安排到需要英语的旅游团,则再分两步进行,第1步再从会英语的另外5人中选2人共3人分别安排到3个需要英语翻译的旅游团,共有·种安排方法;第2步从只会日语的3人中选出2人安排到需要日语翻译的旅游团队有种安排方法,故一共有··种安排方法;第二类,甲没有被安排到需英语翻译的旅游团,则可分两步:第1步,从只会英语的5人中选3人安排到需英语翻译的3个旅游团有种安排方法;第2步从会日语的4人(包括甲)中选2人安排到需要日语翻译的旅游团,有种安排方法,故共有·种安排方法.由分类计数原理,一共有+=1080(种)不同的安排方法.温馨提示本题既用了加法原理,也用到了乘法原理,当两个原理同时使用时,要根据问题的特点分清使用的先后顺序.二、解排列组合问题要遵循一定的先后原则【例2】(1)从1、3、5、7、9中任取3个数字,从2、4、6、8中任取2个数字组成没有重复数字的五位数,一共可组成多少个?解析:从1,3,5,7,9中任取3个数字有种取法,从2,4,6,8中任取2个数字共有种取法,再将取出的5个元素作全排列有种,由乘法原理共有··=7200(种)(2)6个人站成一排照相,其中甲、乙二人相邻的排法有多少种?解析:将甲、乙看成一个元素进行全排列有种,相邻的两人又有种排法,因此,共有·=240(种)排法.温馨提示对于排列组合的综合问题,一般原则是先任取元素组合,后排列顺序,即先组合后排列.在(2)中用到了先整体后个别的原则,即整体排好之后,再考虑特殊元素.这在处理“相邻”、“不相邻”、“连排”问题中有所体现.三、“枚举法”和“逆向思考”【例3】有四位老师在同一年级的4个班级中,各教一个班级的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法总数是()A.8B.9C.10D.11解析:设甲、乙、丙、丁四位老师分别执教1班、2班、3班、4班,由表格知,当乙监考1班时的方法数为3种,同理丙与丁监考1班时也都为3种,从而安排监考的方法总数为9种.乙监考1班情况表1班2班3班4班乙甲丁丙乙丙丁甲乙丁甲丙温馨提示人们在解决排列组合问题时,...