课后导练基础达标1.某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有()A.510种B.105种C.50种D.以上都不对解析:要完成这件事可分10步,即10名乘客分别选一个车站下车,由于每个乘客都有5个车站进行选择,由分步计数原理知,乘客下车的可能方式有N=答案:A2.有4封不同的信投入3个不同的邮筒,可有___________种不同的投入方法.解析:由分步计数原理,共有N=3×3×3×3=34=81种方法.3.(a1+a2+…+an)·(b1+b2+…+bm)·(c1+c2+…+ck)展开后共有_____________项.解析:要得到展开式的一项需分三步,即分别从每个括号里拿出一个加数,然后相乘即可.由分步计数原理,共有n×m×k=nmk项.4.已知a∈{-1,2,3},b∈{0,3,4,5},r∈{1,2},则(x-a)2+(y-b)2=r2所表示的不同的圆共有_____________个.解析:要得到一个圆,需分三步,即分别取得a,b,r三个待定系数的值,由分步计数原理可得不同圆的个数N=3×4×2=24(个)5.若x,yz,∈且|x|<4,|y|<5,则以(x,y)为坐标的不同的点共有_____________个.解析:分两步:先确定x,有±3,±2,±1,0这七个可能的值;再确定y,有±4,±3,±2,±1,0这九个可能的值.从而以(x,y)为坐标的不同的点共有63个.综合运用6.某种彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11到20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360元B.6720元C.4320元D.8640元解析:这种特殊要求的号共有:8×9×10×6=4320(注).因此至少需花钱4320×2=8640(元),∴选D.答案:D7.要从甲、乙、丙3名工人中选出2名分别上白班和晚班,有多少种不同的选法?解析:从3名工人中选1名上白班和1名上晚班,可以分成先选1名上白班,再选1名上晚班这两个步骤完成.先选1名上白班,共有3种选法;上白班的人选定后,上晚班的工人有2种选法.根据分步计数原理,所求的不同的选法数是3×2=6(种).8.设集合M={k||k|<3且k∈Z},P(x,y)是坐标平面上的点,且x,yM,∈则P可表示平面上的点多少个?解析:M={-2,-1,0,1,2},分两步:第一步确定横坐标有5种,第二步确定纵坐标有5种,根据乘法原理,P可表示平面上的点5×5=25个.9.有多少个能被3整除而又含有数字6的五位数?解析:易知,在90000个五位数中共有30000个可被3整除.下面求其中不含数字6的有多少个:在最高位,不能为0和6,有8种可能,在千、百、十位上,不能为6各有9种可能,在个...