课后提升作业二十五生活中的优化问题举例(45分钟70分)一、选择题(每小题5分,共40分)1.用长为24m的钢筋做成一个长方体框架,若这个长方体框架的底面为正方形,则这个长方体体积的最大值为()A.8m3B.12m3C.16m3D.24m3【解析】选A.设长方体的底面边长为xm,则高为(6-2x)m,所以00),L′=2-.令L′=0,得x=16或x=-16(舍去).因为L在(0,+∞)上只有一个极值点,所以它必是最小值点.因为x=16,所以=32.故当堆料场的宽为16m,长为32m时,可使砌墙所用的材料最省.【拓展延伸】求几何体面积或体积的最值问题的关键:1.分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,2.再用导数求最值.3.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k>0).已知贷款的利率为0.0486,且假设银行吸收的存款能全部放贷出去.设存款利率为x,x∈(0,0.0486),若使银行获得最大收益,则x的取值为()A.0.0162B.0.0324C.0.0243D.0.0486【解析】选B.依题意,存款量是kx2,银行支付的利息是kx3,获得的贷款利息是0.0486kx2,其中x∈(0,0.0486).所以银行的收益是y=0.0486kx2-kx3(00;当0.03240),则底面积S=x2,所以h==.S表=x·×3+x2×2=+x2,S′表=x-,令S′表=0得x=,因为S表只有一个极值,故x=为最小值点.6.把一个周长为12cm的长方形作为一个圆柱的侧面,当圆柱的体积最大时,该圆柱底面周长与高的比为()A.1∶2B.1∶πC.2∶1D.2∶π【...