本章整合知识网络专题探究专题一典型的离散型随机变量分布列离散型随机变量的分布列完全描述了随机变量所表示的随机现象的分布情况,是进一步研究随机变量的数字特征的基础,对随机变量分布列的求解要达到熟练的程度,求离散型随机变量的分布列应注意以下几个步骤:(1)确定离散型随机变量所有的可能取值,以及取这些值时的意义;(2)尽量寻求计算概率时的普遍规律;(3)检查计算结果是否满足分布列的第二条性质.【例1】袋中有8个白球、2个黑球,从中随机地连续抽3次,每次取1球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.思路点拨:(1)为二项分布;(2)为超几何分布.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到的黑球的概率均为,3次取球可以看成3次独立重复试验,则X~B.所以P(X=0)=C0×3=;P(X=1)=C1×2=;P(X=2)=C2×1=;P(X=3)=C3×0=.因此,X的分布列为X0123P(2)不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有P(Y=0)==;P(Y=1)==;P(Y=2)==.因此,Y的分布列为Y012P专题二事件的相互独立与二项分布的应用独立事件与二项分布是高考的一个重点,独立事件是相互之间无影响的事件,P(AB)=P(A)P(B)是事件A,B独立的充要条件.二项分布实质是独立事件的一类具体情况.n次独立重复试验中某事件A恰好发生k次的概率P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.【例2】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确各得0分,第三个题目,回答正确得20分,回答不正确得-10分.如果一个挑战者回答前两题正确的概率都是0.8,回答第三题正确的概率为0.6,且各题回答正确与否相互之间没有影响.(1)求这位挑战者回答这三个问题的总得分ξ的分布列和数学期望;(2)求这位挑战者总得分不为负数(即ξ≥0)的概率.思路点拨:本题解题的关键是明确ξ的取值及ξ取不同值时所表示的试验结果,明确ξ的取值后,利用相互独立事件的概率公式计算即可.解:(1)如果三个题目均答错,得0+0+(-10)=-10(分).如果三个题目均答对,得10+10+20=40(分).如果三个题目一对两错,包括两种情况:①前两个中一对一错,第三个错,得10+0+(-10)=0(分);②前两个错,第三个对,得0+0+20=20(分).如果三个题目两对一错,也包括两种情形;①前两个对,第三个错,得10+10+(-10)=10(分);②第三个对...