课堂导学三点剖析一、避免重复与遗漏的方法之一——正确区别有序还是无序【例1】将9份不同的礼品,平均分成3份,有多少种不同的分法?错解:分三步:第一步,从9件不同的礼品中,选出3件有种;第二步,从剩下的6件中选3件有种;第三步,从余下的3件中选3件有种,由乘法原理有=1680种不同的分法.剖析:实质上,本题属于平均分组问题,造成错误的原因在于分步的本身就在排序,而平均分成的3份,其份与份之间不存在排序的关系,因而出现了重复.如(为了方便起见,以数字1—9代表9份不同的礼品)先取1,2,3,再取4,5,6,最后取7,8,9和先取4,5,6再取1,2,3,最后取7,8,9以及先取7,8,9,再取4,5,6,最后取1,2,3等这些相同的分法被重复计算了,因而正确的解法为:=280种不同的取法.温馨提示该用排列的问题,用组合去做,容易导致“遗漏”;该用组合做的却用了排列,会导致“重复”.因此,在解题时要正确区分问题是否与顺序有关.另外,在使用乘法原理时,分步本身有时是在排序,在解题时要特别小心.二、避免重复和遗漏的措施之二——恰当地使用两个原理进行分类或分步【例2】用0,1,2,3,4,5,6,7,8这九个数字组成九位数,要求1不能排在个位,问这样的不重复的九位数有多少个?错解1:九个数字排在九个位置上,共有种排法,从中扣去0在首位的有种排法,再除去1在个位的排法,故所求的有-(个).错解2:0不能排在首位,1不能排在个位,那么0,1就排在中间七个位置,有种排法.0,1排定后,其余七个数排在留下的七个位置上,有种排法,故所求九位数有个.剖析:解法1的错误在于减“重”了,当分别减去0在首位或1在个位时,重复减去了0在首位且1在个位两次,故应再补上一次,即所求九位数应是:-+(个).解法2的错误在于遗漏了1在首位或0在个位的情况.1在首位的情况有种,0在个位的情况有种,但这里又重复了1在首位且同时0在个位的情况两次,应再扣一次,故所求九位数应是:+2-(个).温馨提示对符合或不符合条件的分类情况考虑不全时,会出现“遗漏”;另外,把符合条件和不符合条件的相混容易造成错误.三、避免重复遗漏的措施之三——认真审题,缜密考虑特殊情形以及题目的隐含条件【例3】将10个相同的小球放入编号为1,2,3的盒子里,每个盒子中的球数不小于盒子的编号数,则有________种不同的放法.错解:先在编号为1,2,3的盒子里分别放入1,2,3个小球,则剩余的小球可以任意放.有34种放法.剖析:解题过程中,先把盒子里放上小球是可以的...