2.4正态分布\s\up7()教材分析正态分布是高中数学新增内容之一,是统计中的重要内容.一方面,它是在学生学习了总体分布后给出的自然界最常见的一种分布,它是学生进一步应用正态分布解决实际问题的理论依据,因此它起着承上启下的桥梁作用;另一方面,正态分布具有许多良好的性质,许多分布都可以用正态分布来近似描述.因此在理论研究中,正态分布占有很重要的地位.课时分配1课时教学目标知识与技能掌握正态分布在实际生活中的意义和作用.结合正态曲线,加深对正态密度函数的理解.归纳正态曲线的性质.过程与方法能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法.情感、态度与价值观通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神.重点难点教学重点:正态曲线的性质、标准正态曲线N(0,1).教学难点:通过正态分布的图形特征,归纳正态曲线的性质.\s\up7()1.回顾曲边梯形的面积S=f(x)dx的意义;2.复习频率分布直方图,频率分布折线图的作法、意义:①在频率分布直方图中,区间(a,b)对应的图形的面积表示____________________.②在频率分布直方图中,所有小矩形的面积的和为_______________________________.设计意图:用学过的知识来探究新问题,驱动学生思维的自觉性和主动性,让学生亲身感受知识的发生过程,既反映了数学的发展规律,又符合学生的思维特征和认知规律.提出问题:同学们知道高尔顿板试验吗?课本的内容表述了高尔顿板试验,我们将通过小球落入各个小槽中的频率分布情况来认识正态分布.活动设计:教师板书课题,学生阅读课本中关于高尔顿板的内容.提出问题:(1)运用多媒体画出频率分布直方图.(2)当n由1000增至2000时,观察频率分布直方图的变化.(3)请问当样本容量n无限增大时,频率分布直方图变化的情况如何?(频率分布就会无限接近一条光滑曲线——总体密度曲线)(4)样本容量越大,总体估计就越精确.活动结果:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,...