第二课时教学目标知识与技能利用排列和排列数公式解决简单的计数问题.过程与方法经历把简单的计数问题化为排列问题解决的过程,从中体会“化归”的数学思想.情感、态度与价值观能运用所学的排列知识,正确地解决实际问题,体会“化归”思想的魅力.重点难点教学重点:利用排列和排列数公式解决简单的计数问题.教学难点:利用排列和排列数公式解决简单的计数问题.\s\up7()提出问题1:判断下列两个问题是不是排列问题,若是求出排列数,若不是,说明理由.(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?活动设计:学生自己独立思考,教师提问.活动成果:解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同送法的种数是:A=5×4×3=60,所以,共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是:5×5×5=125,所以,共有125种不同的送法.本题中两个小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3名同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到哪种书相互之间没有联系,要用分步计数原理进行计算.设计意图:引导学生通过具体实例回顾排列的概念和排列数公式.提出问题2:请同学们再回顾一下排列的概念和排列数公式.活动设计:学生一起回答,教师板书.活动成果:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同.从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A表示.注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中,任取m(m≤n)个元素的所有排列的个数,是一个数.所以符号A只表示排列数,而不表示具体的排列.设计意图:复习排列概念和排列数公式,为本节课的学习奠定基础.类型一:直接抽象为排列问题的计数问题例1某年全国足球甲级(A...