第三课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.\s\up7()提出问题1:有四位同学参加三项不同的比赛,(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项比赛只许一位同学参加,有多少种不同的结果?提出问题2:设集合A={a,b,c,d,e,f},B={x,y,z},则从集合A到B共有多少个不同的映射?活动设计:请同学分析思路和解法依据,再请另外的同学补充.活动成果:问题1.(1)分四步,每位同学选一个项目为一步,每位同学有三种选择,即每步有三种不同的方法,根据分步乘法计数原理,四位同学共有参赛方法:3×3×3×3=81种;(2)分三步,每项比赛选择一名同学参加为一步,每项比赛被选择的方法有四种,即每步有四种不同的方法,根据分步乘法计数原理,三项比赛共有参赛方法:4×4×4=64种.问题2.分6步:先选a的象,有3种可能,再选b的象也是3种可能,…,最后选f的象也有3种可能,由分步乘法计数原理知,共有36=729种不同的映射.设计意图:通过两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:请同学们回忆推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学加以补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题;(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分...