第二课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.\s\up7()提出问题1:某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?提出问题2:有一个班共有46名学生,其中男生有21名.(1)现要选派一名学生代表本班参加学校的学代会,则有多少种不同的选派方法?(2)若要选派男、女学生各一名代表本班参加学校的学代会,则有多少种不同的选派方法?活动设计:请同学分析思路和解法依据,并由另外的同学补充.活动成果:1.要完成领带和衬衣的搭配可以分两个步骤:第一步,选择一条领带,有4种不同的选择;第二步,选择一件衬衣,有6种不同的选择.根据分步乘法计数原理,共有4×6=24种不同的搭配方法.2.(1)要选派一名学生代表本班参加学校的学代会有两类不同的选法:第一类,选男生,有21种不同的选择;第二类,选女生,有25种不同的选择.根据分类加法计数原理,共有21+25=46种不同的选择.(2)要选派男、女学生各一名代表本班参加学校的学代会,可以分成两个步骤:第一步,选男生,共有21种不同的选择;第二步,选女生,共有25种不同的选择.根据分步乘法计数原理,共有21×25=525种不同的选法.设计意图:通过以上两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:上一节课我们学习了分类加法计数原理和分步乘法计数原理,并将两个原理进行了推广,请同学们回忆我们推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与...