(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是()A.平行B.相交C.平行或相交D.不相交答案:B2.如图,α∩β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC解析: D∈l,l⊂β,∴D∈β.又C∈β,∴CD⊂β;同理,CD⊂平面ABC,∴平面ABC∩平面β=CD.故选C.答案:C3.异面直线a,b分别在平面α,β内,若α∩β=l,则直线l必定()A.分别与a,b相交B.与a,b都不相交C.至少与a,b中一条相交D.至多与a,b中一条相交解析:假设a∥l,b∥l,则a∥b,这与a,b异面矛盾.又a与l共面,b与l共面,所以l至少与a,b中的一条相交.答案:C4.BC是Rt△ABC的斜边,PA⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5答案:A5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:易知:在△BCD中,在∠DBC=45°,∴∠BDC=90°.又平面ABD⊥平面BCD,而CD⊥BD,∴CD⊥平面ABD,∴AB⊥CD,而AB⊥AD,∴AB⊥平面ACD,∴平面ABC⊥平面ACD.答案:D6.在等腰直角三角形ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为()A.30°B.60°C.90°D.120°解析:答案:C7.在长方体ABCD-A1B1C1D1中,AB=4,BC=3,则二面角C-BB1-D1的正切值为()A.B.C.D.解析: DB⊥BB1,BC⊥BB1,∴由二面角的平面角的定义知,∠DBC就是二面角C-BB1-D1的平面角.又∠BCD=90°,∴tan∠DBC=.答案:D8.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是()A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m⊂α,n⊂β,m∥n,则α∥βC.若m∥α,n∥β,m⊥n,则α⊥βD.若n⊥α,n⊥β,m⊥β,则m⊥α解析:选项A的已知条件中加上m⊂β,那么命题就是正确的,也就是面面垂直的性质定理.选项B错误,容易知道两个平面内分别有一条直线平行,那么这两个平面可能相交也可能平行.选项C错误,因为两个平面各有一条与其平行的直线,如果这两条直线垂直,并不能保证这两个平面垂直.选项D正确,由n⊥α,n⊥β可得α∥β,又因为m⊥β,所以m⊥α.答案:D9.已知:平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC,BD分别在...