课时达标检测(十九)古典概型的综合问题一、选择题1.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母按字母顺序恰好是相邻的概率为()A.B.C.D.答案:B2.从分别写有数字1,2,3,…,9的9张卡片中,任意取出两张,观察上面的数字,则两数之积是完全平方数的概率为()A.B.C.D.答案:A3.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则是下列哪个事件的概率()A.颜色全同B.颜色不全同C.颜色全不同D.无红球答案:B4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为()A.B.C.D.答案:C5.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为()A.B.C.D.答案:C二、填空题6.(浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.解析:设3张奖券中一等奖、二等奖和无奖分别为a,b,c,甲、乙两人各抽取1张的所有情况有ab,ac,ba,bc,ca,cb,共6种,其中两人都中奖的情况有ab,ba,共2种,所以所求概率为.答案:7.甲、乙、丙三名同学上台领奖,从左到右按甲、乙、丙的顺序排列,则三人全都站错位置的概率是________.解析:甲,乙,丙三人随意站队排列,共有6种顺序,即(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),而“三人全都站错位置”包括(乙,丙,甲)和(丙,甲,乙)2个基本事件,故所求概率P==.答案:8.设集合P=,Q=,P⊆Q,x,y∈.在直角坐标平面内,从所有满足这些条件的有序实数对(x,y)所表示的点中任取一个,其落在圆x2+y2=r2内的概率恰为,则r2的一个可能整数值是________(只需要写出一个即可).解析:满足条件的点有(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),共14个.欲使其点落在x2+y2=r2内的概率为,则这14个点中有4个点在圆内,所以只需29<r2≤32,故r2=30或31或32.答案:30(或31或32)三、解答题9.设b和c分别是先后抛掷一枚骰子得到的点数,求方程x2+bx+c=0有实根的概率.解:设事件A为“方程x2+bx+c=0有实根”,则A=.而(b,c)共有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(...