课时达标检测(十八)古典概型的概念及简单应用一、选择题1.下列关于古典概型的说法中正确的是()①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=.A.②④B.①③④C.①④D.③④答案:B2.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.答案:B3.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p2答案:C4.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A.B.C.D.答案:A5.(陕西高考)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A.B.C.D.答案:B二、填空题6.从甲,乙,丙,丁四个同学中选两人当班长和副班长,其中甲,乙为男生,丙、丁是女生,则至少有一名女生当选的概率是________.解析:基本事件有(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)共6个,其中“没有女生当选”只包含(甲,乙)1个,故至少一名女生当选的概率为P=1-P(没有女生当选)=1-=.答案:7.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为________.解析:从5根竹竿中一次随机抽取2根的基本事件总数为10,它们的长度恰好相差0.3m的基本事件数为2,分别是:2.5和2.8,2.6和2.9,故所求概率为0.2.答案:0.28.(新课标全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.解析:设2本数学书分别为A,B,语文书为C,则所有的排放顺序有ABC,ACB,BAC,BCA,CAB,CBA,共6种情况,其中数学书相邻的有ABC,BAC,CAB,CBA,共4种情况,故2本数学书相邻的概率P==.答案:三、解答题9.从-3,-2,-1,0,5,6,7这七个数中任取两个数相乘得到的积中,求:(1)积为零的概率;(2)积为负数的概率.解:从七个数中任取两个数相乘,共有=21个基本事件.(1)从七个数中任取两个数相乘,积为零时,共有6个基本事件,因此,积为零的概率为=.(2)从七个数中任取两个数相乘,积为负数时,共有3×3=9个基本事件,因此,积为负数的概率为=.10.现共有6家企...