课时跟踪检测(六)函数的极值与导数层级一学业水平达标1.已知函数y=f(x)在定义域内可导,则函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的()A.充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件解析:选B根据导数的性质可知,若函数y=f(x)在这点处取得极值,则f′(x)=0,即必要性成立;反之不一定成立,如函数f(x)=x3在R上是增函数,f′(x)=3x2,则f′(0)=0,但在x=0处函数不是极值,即充分性不成立.故函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的必要不充分条件,故选B.2.设函数f(x)=+lnx,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点解析:选D由f′(x)=-+==0可得x=2.当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增.故x=2为f(x)的极小值点.3.已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是()A.(2,3)B.(3,+∞)C.(2,+∞)D.(-∞,3)解析:选B因为函数f(x)=2x3+ax2+36x-24在x=2处有极值,又f′(x)=6x2+2ax+36,所以f′(2)=0解得a=-15.令f′(x)>0,解得x>3或x<2,所以函数的一个递增区间是(3,+∞).4.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()解析:选C由题意可得f′(-2)=0,而且当x∈(-∞,-2)时,f′(x)<0,此时xf′(x)>0;排除B、D,当x∈(-2,+∞)时,f′(x)>0,此时若x∈(-2,0),xf′(x)<0,若x∈(0,+∞),xf′(x)>0,所以函数y=xf′(x)的图象可能是C.5.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()A.,0B.0,C.-,0D.0,-解析:选Af′(x)=3x2-2px-q,由f′(1)=0,f(1)=0得,解得∴f(x)=x3-2x2+x.由f′(x)=3x2-4x+1=0得x=或x=1,易得当x=时f(x)取极大值.当x=1时f(x)取极小值0.6.设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点,则常数a=______________.解析: f′(x)=+2bx+1,由题意得∴a=-.答案:-7.函数f(x)=ax2+bx在x=处有极值,则b的值为________.解析:f′(x)=2ax+b, 函数f(x)在x=处有极值,∴f′=2a·+b=0,即b=-2.答案:-28.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0).如图,则下列说法中不正确的是________...