课后提升作业二圆柱、圆锥、圆台、球、简单组合体的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个共底的圆锥【解析】选D.连BD交AC于O,则AC⊥BD.BC,AB绕直线AC旋转各得一圆锥.【补偿训练】将图①所示的三角形绕直线l旋转一周,可以得到如图②所示的几何体的是()【解析】选B.由旋转体的结构特征知,几何体由上、下两个同底的圆锥组成,因此只有B符合题意.2.如图所示,是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的平面轴对称图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点【解析】选A.该组合体中有一个球和一个半球,故A错误.3.(2016·银川高一检测)圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是()A.等边三角形B.等腰直角三角形C.顶角为30°的等腰三角形D.其他等腰三角形【解析】选A.设圆锥底面圆的半径为r,依题意可知2πr=π·Error:Referencesourcenotfound,则r=Error:Referencesourcenotfound,故轴截面是边长为Error:Referencesourcenotfound的等边三角形.4.如图所示的简单组合体,其结构特征是()A.两个圆锥B.两个圆柱C.一个棱锥和一个棱柱D.一个圆锥和一个圆柱【解析】选D.上面是圆锥,下接一个同底的圆柱.5.如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】选A.该几何体自上向下是由一个圆锥,两个圆台和一个圆柱构成,是由A中的平面图形旋转而形成的.6.过球面上任意两点A,B作大圆,可能的个数是()A.有且只有一个B.一个或无穷多个C.无数个D.以上均不正确.Com]【解析】选B.当过AB的直线经过球心时,经过A,B的截面所得的圆都是球的大圆,这时可作无数个;当直线AB不过球心时,经过A,B,O的截面就是一个大圆,这时只能作一个大圆.【补偿训练】正三棱锥内有一个内切球,经过棱锥的一条侧棱和高作截面,正确的图是()【解析】选C.正三棱锥的内切球与各个面的切点为正三棱锥各面的中心,所以过一条侧棱和高的截面必过该棱所对面的高线,故C正确.7.如图所示的平面结构,绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个棱柱【解析】选B.外面的圆旋转形成一个球,里面的长方形旋转形...