优秀领先飞翔梦想成人成才第2课时用计算器求算术平方根及其大小比较教学目标1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律;2、能用夹值法求一个数的算术平方根的近似值;3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。教学难点夹值法及估计一个(无理)数的大小的思想。知识重点夹值法及估计一个(无理)数的大小。[来源:Z+xx+k.Com]教学过程(师生活动)设计理念情境导入我们已经知道:正数x满足2x=a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,16=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本的大正方形的边长2等于多少呢?问题:2究竟有多大?[来源:学.科.网]建议:1、先让学生思考讨论并估计大概有多大,在此基础上按书本讲解并板书.可以这样提出问题并讲解:由直观可知招大于1而小于2,那么了2是1点几呢?(接下来由试验可得到平方数最接近2的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,2大于1.4而小于1.5......这里默认了非负数a和b当a<b时,ba这里可以从94得到。2、用夹值法去逼近一个(无理)数,是一个重要的求近似数的方法,也是一种无限逼近的数学思想,教师应加以重视,让学生体验它的妙处.在2出现之前,学生已经知道利用乘方运算,通过观察的方法求一些完全平方数的算术平方根,但是对于像2这样的非完全平方数,如何求它的算术平方根,对学生来讲是一个新问题.教科书给出两种求2的方法:一种是估算,一种是使用计算器.对于第一方法,教科书利用夹值的办法,夹值法是重要的有效的求近似值的方法,所以应详细讲解.对于无限不循环小数这个概念,教学时可以适当回忆以前学生学过的数,通过比较,了解www.youyi100.com第1页共3页优秀领先飞翔梦想成人成才3、关于2是一个“无限不循环小数”要向学生详细说明.为无理数的概念的提出打下基础.归纳(提出问题):你对正数a的算术平方根a的结果有怎样的认识呢?a的结果有两种情:当a是完全平方数时,a是一个有限数;当a不是一个完全平方数时,a是一个无限不循环小数。无限不循环小数的特征,为后面学习实数做铺垫。用计算器求一个正有理数的算术平方根例1(课本的例2)用计算器求下列各式的值:(1)3136(2)2(精确到0.001)[来源:学#科#网Z#X#X#K]可按照书本讲.注意计算器的用法,指出计算器上显示的也只是近似...