优秀领先飞翔梦想成人成才第2课时切线的判定与性质1.掌握判定直线与圆相切的方法,并能运用直线与圆相切的方法进行计算与证明.2.掌握直线与圆相切的性质,并能运用直线与圆相切的性质进行计算与证明.3.能运用直线与圆的位置关系解决实际问题.一、情境导入约在6000年前,美索不达米亚人做出了世界上第一个轮子——圆型的木盘,你能设计一个办法测量这个圆形物体的半径吗?二、合作探究探究点一:切线的判定【类型一】判定圆的切线如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,求证:CD是⊙O的切线.证明:连接OC, AC=CD,∠D=30°,∴∠A=∠D=30°. OA=OC,∴∠2=∠A=30°,∴∠1=60°,∴∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线.方法总结:切线的判定方法有三种:①利用切线的定义,即与圆只有一个公共点的直线是圆的切线;②到圆心距离等于半径的直线是圆的切线;③经过半径的外端,并且垂直于这条半径的直线是圆的切线.探究点二:切线的性质【类型一】利用切线进行证明和计算如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC.(1)求证:△ACB≌△APO;(2)若AP=,求⊙O的半径.(1)证明: PA为⊙O的切线,A为切点,∴∠OAP=90°.又 ∠P=30°,∴∠AOB=60°,又OA=OB,∴△AOB为等边三角形.∴AB=AO,∠ABO=60°.又 BC为⊙O的直径,∴∠BAC=90°.在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO.(2)解:在Rt△AOP中,∠P=30°,AP=,∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1.【类型二】切线的性质与判定的综合应用如图,AB是⊙O的直径,点F、C是⊙O上的两点,且AF=FC=CB,连接AC、AF,过点C作CD⊥AF交AF的延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.分析:(1)连接OC,由弧相等得到相等的圆周角,根据等角的余角相等推得∠ACD=∠B,再根据等量代换得到∠ACO+∠ACD=90°,从而证明CD是⊙O的切线;(2)由AF=FC=CB推得∠DAC=∠BAC=30°,再根据直角三角形中30°角所对的直角边等于斜边的一半即可求得AB的长,进而求得⊙O的www.youyi100.com第1页共2页优秀领先飞翔梦想成人成才半径.(1)证明:连接OC,BC. FC=CB,∴∠DAC=∠BAC. CD⊥AF,∴∠ADC=90°. AB是直径,∴∠ACB=90°.∴∠ACD=∠B. BO=OC,∴∠OCB=∠OBC, ∠ACO+∠OCB=90°,∠OCB=∠OBC,∠ACD=∠ABC,∴∠AC...