8.2代入消元法教学目标1、会用代入法解二元一次方程组。2、初步体会解二元一次方程组的基本思想——“消元”。3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。重点:代入消元法解简单的二元一次方程组;难点:体会解二元一次方程组的思路是“消元;教学过程一、创设情境,引入课题根据篮球比赛规则:赢一场得2分,输一场得1分.在某次篮球联赛中,七(1)班,打完22场比赛后积40分,问该球队赢了多少场?输了多少场?{2x+y=5(1)¿¿¿¿二、目标导学,探索新知目标导学1:掌握代入消元法的解题步骤问题1你能根据问题中的等量关系列出二元一次方程组吗?问题2这个实际问题能列一元一次方程求解吗?解:设胜x场,则负(22-x)场.2x+(22-x)=40.问题3对比方程和方程组,你能发现它们之间的关系吗?活动1把下列方程改写成用含有一个未知数的代数式表示另一个未知数的形式:【教学备注】逐步探究中规范解法,总结代入法的解题步骤。【教学提示】在含有一个未知数的式子表示另一个未知数可先示范一例,其他学生完成。消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的思想叫做.代入消元法:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。用代入法解二元一次方程组的一般步骤变:1、将方程组里的一个方程变形,用含有一个未知数的式子表示另一个未知数;代:2、用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;求:3、把这个未知数的值代入上面的式子,求得另一个未知数的值;写:4、写出方程组的解。学习目标2:利用代入消元法解题1.用代入法解下列二元一次方程组三、巩固训练,熟练技能1.用代入法解方程组,先把方程-(1)--变为-----------,在代入方程------,求得------的值,然后再求-------的值。2.用代入法解下列方程【教学提示】根据上面的探究得出消元思想和代入消元法的解题步骤。【教学提示】学生动手,老师启发引导即可。要提醒学生注意解题规范。)()(2634152yxyx{4x+y=5¿¿¿¿{x+2y=3¿¿¿¿3.已知方程组{x+2y=5¿...