优秀领先飞翔梦想成人成才第2课时含30°角的直角三角形的性质教学目标1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.2.有一个角为30°的直角三角形的性质的简单应用.教学重点含30°角的直角三角形的性质定理的发现与证明.教学难点1.含30°角的直角三角形性质定理的探索与证明.2.引导学生全面、周到地思考问题.教学过程Ⅰ.提出问题,创设情境我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,它有什么不同于一般的直角三角形的性质呢?问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?Ⅱ.导入新课用含30°角的直角三角尺摆出了如下两个三角形.www.youyi100.com第1页共6页优秀领先飞翔梦想成人成才(1)DCAB(2)DCAB其中,图(1)是等边三角形,因为△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.图(1)中,∠B=∠C=60°,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC是等边三角形.由此能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?你能证明它吗?定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC=12AB.CABDCAB分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.证明:在△ABC中,∠ACB=90°,∠BAC=30°,则∠B=60°.延长BC至D,使CD=BC,连接AD(如下图)www.youyi100.com第2页共6页优秀领先飞翔梦想成人成才 ∠ACB=60°,∴∠ACD=90°. AC=AC,∴△ABC≌△ADC(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC=12BD=12AB.[例]右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?分析:观察图形可以发现在Rt△AED与Rt△ACB中,由于∠A=30°,所以DE=12AD,BC=12AB,又由D是AB的中点,所以DE=14AB.解:因为DE⊥AC,BC⊥AC,∠A=30°,由定理知BC=12AB,DE=12AD,所以BD=12×7.4=3.7(m).又AD=12AB,所以DE=...