教案教学基本信息课题菱形的判定学科数学学段:第三学段年级八年级教材书名:数学八年级下册出版社:人民教育出版社出版日期:2013年9月教学设计参与人员姓名单位设计者周芳北京市陈经纶中学分校实施者周芳北京市陈经纶中学分校指导者谢慧北京市朝阳区教育研究中心课件制作者周芳北京市陈经纶中学分校教学目标及教学重点、难点本节课类比矩形判定方法的学习,探索并证明菱形的判定定理.通过经历判定定理的探索过程,丰富学生的数学活动经验和体验,发展学生的合情推理和演绎推理的能力.通过3道例题的学习,巩固菱形的判定方法.教学过程教学环节主要教学活动设置意图提出问题,引发思考1.同学们还记得之前我们是如何探索平行四边形和矩形的判定方法的吗?2.矩形的判定方法是什么?这些判定方法之间的关系是什么?回忆平行四边形和矩形的判定方法的学习,为探究菱形的判定方法做铺垫.探究判定,深化认知1.回忆菱形的定义,有一组邻边相等的平行四边形叫做菱形.这是判定菱形的一种方法.2.启发学生探究菱形的性质定理的逆命题,证明逆命题的正确性,从而得到菱形的判定定理.(1)猜想:对角线互相垂直的平行四边形是菱形.已知:如图,在ABCD中,对角线AC,BD相交于点O,且AC⊥BD.求证:ABCD是菱形.证明: 四边形ABCD是平行四边形,通过发现,猜想,证明的过程,探究菱形的判定定理.∴OA=OC. AC⊥BD,∴DA=DC.又四边形ABCD是平行四边形,∴ABCD是菱形.(2)猜想:对角线互相垂直的平行四边形是菱形.已知:如图,在四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证明: AB=BC=CD=AD,∴AB=CD,BC=AD.∴四边形ABCD是平行四边形.又AB=BC,∴四边形ABCD是菱形.3.总结菱形的4种判定方法(1)有一组邻边相等的平行四边形是菱形;(2)四条边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形;(4)对角线互相垂直平分的四边形是菱形.分析菱形的四种判定方法之间的关系:为了使学生更好的理解记忆菱形的判定方法,分析它们之间的关系.从判定的前提看,可以从平行四边形出发,也可以从四边形出发进行判断;从判定的条件看,有两个判定方法是关于边的描述,有两个判定方法是关于对角线的描述.应用练习,巩固知识例如图,ABCD的对角线AC,BD相交于点O,且AB=5,AO=4,BO=3.求证:ABCD是菱形.例题小结:本题利用勾股定理的逆定理得到一个直角三角形,从而有了直角,产生了对角线互相垂直的关系,这样就可以判定一个平行四边形是菱形.再次体会了三...