九江市2023年第一次高考模拟统一考试数学试题(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.全卷满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的学号、姓名等项内容填写在答题卡上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷(选择题60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则(A)A.B.C.D.解:,,故选A.2.复数满足,则的虚部为(A)A.B.C.D.解:,虚部为,故选A.3.若实数满足约束条件,则的最大值为(D)A.B.C.D.解:由约束条件作出可行域,如图中阴影部分所示.易知目标函数的最大值在处取得,.故选D.4.巴塞尔问题是一个著名的级数问题,这个问题首先由皮耶特罗·门戈利在1644年提出,由莱昂哈德·欧拉在1735年解决.欧拉通过推导得出:.某同学为了验证欧拉的结论,设计了如右算法计算的值来估算,则判断框填入的是(D)A.B.C.D.解:由程序框图可知,最后一次进入判断框时,,执行最后一次循环体,,,输出sum,故选D.5.设等比数列的公比为,前项和为,则“”是“为递增数列”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:若,,则为递减数列.若为递增数列,则,,.所以“”是“为递增数列”的必要不充分条件.故选B.6.已知是边长为的等边三角形,且其顶点都在球的球面上.若球的表面积为,则到平面的距离为(B)A.B.C.D.解:,球的半径,设的外心为,从而,所求距离,故选B.7.已知函数的定义域为,若为偶函数,且,,则(A)A.B.C.D.解:由,令得.令,得,,.因为为偶函数,,即,曲线关于直线对称.又,图像关于点中心对称,的周期.,,.故选A.8.已知双曲线(),过点作的一条渐近线的垂线,垂足为,过点作轴的垂线交于点,若与的面积相等(为坐标原点),则的离心率为(C)A.B.C.D.解:与的面积相等,为的中点,故为等腰直角三角形,,,,即,,,故选C.9.在正方体中,点为棱上的动点,则与平面所成角的取值范围为(C)A.B.C.D.解:设,连接,平面,即为与平面所成角.设,,,,,故选C.10.已知为单位向量,则向量与夹角的最大值为(A)A.B.C.D.解:设,则,令,,,当且仅当时取等号,向量与夹角的最大值为....