2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写):D我们的报名参赛队号为(8位数字组成的编号):23068006所属学校(请填写完整的全名):四川建筑职业技术学院参赛队员(打印并签名):1.王磊2.蔡姗姗3.蒋国辉指导教师或指导教师组负责人(打印并签名):黄磊(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储药柜的设计摘要本文针对自动补药药柜的设计进行研究。针对问题一,在只考虑储药柜竖向隔板的最小间距种类,在满足安全送药的四个条件,即侧间距2mm,无并排,无侧翻,无水平旋转下,建立单目标优化模型,并设计区间无重叠聚类算法,实现最少间距种类的求解,由程序得到最少四类列宽的分类,分别为19mm,34mm,46mm,58mm针对问题二,我们将总宽度冗余,与列间距类型数量作为目标,建立双目标规划模型。基于分层求解多目标规划模型方法,我们在问题一得到的4个不同类型的基础上,首先建立冗余权重模型,首先计算出各中药盒宽度在原始4种分类基础上的加权冗余,并按照其加权冗余累积贡献...