锐角三角函数(1)初三年级数学主讲人陈欣欣北京市昌平区百善学校北京市中小学空中课堂解直角三角形锐角三角函数的概念利用锐角三角函数解直角三角形在现实生活中有广泛应用,如在测量、建筑学、物理学中本章主要内容复习回顾cabCBA如图,在Rt△ABC中,∠C=90°,请你说出三边之间的关系、两锐角之间的关系.1.三边之间的关系:222abc2.两锐角之间的关系:∠A+∠B=90°(勾股定理)思考:边角之间有什么关系?特殊的直角三角形入手BCAD30°[问题1]如图,在Rt△ABC中,∠C=90°,如果∠A=30°,你能说出边之间的关系吗?延长BC至点D,使得CD=BC,可证△ABD是等边三角形.所以,11.22BCBDAB1.2BCAB即解:∠A=30°时,.12BCABBCA30°[问题1]如图,在Rt△ABC中,∠C=90°,如果∠A=30°,你能说出边之间的关系吗?结论:12BCAB1.∠A=30°时,;2.这个比值只与∠A的大小有关,与Rt△ABC的大小无关.[问题2]如图,在Rt△ABC中,∠C=90°,如果∠A=45°,那么∠A所对的边BC与斜边AB的比值是多少?已知∠A=45°,∠ACB=90°,可证△ABC是等腰直角三角形.2.2BCAB即ACB45°解析:设AC=BC=k,由勾股定理,得AB=2.k所以12.222BCkABkkk2k设参法[问题2]如图,在Rt△ABC中,∠C=90°,如果∠A=45°,那么∠A所对的边BC与斜边AB的比值是多少?ACB45°结论:1.∠A=45°时,;22BCAB2.这个比值只与∠A的大小有关,与Rt△ABC的大小无关.60°ACB[问题3]如图,在Rt△ABC中,∠C=90°,如果∠A=60°,那么∠A所对的边BC与斜边AB的比值是多少?由已知得∠B=30°,∠ACB=90°,可知3.2BCAB即解析:设AC=k,则AB=2k,BC=3.k所以33.22BCkABkk3k2k1.2ACAB设参法60°ACB[问题3]如图,在Rt△ABC中,∠C=90°,如果∠A=60°,那么∠A所对的边BC与斜边AB的比值是多少?k3k2k结论:1.∠A=60°时,;32BCAB2.这个比值只与∠A的大小有关,与Rt△ABC的大小无关.BCA30°60°ACBACB45°32BCAB22BCAB12BCAB发现:当一个锐角的度数是30°,45°或60°时,它们的对边与斜边的比是一个固定不变的值,且这个比值只与锐角的大小有关.[问题4]在Rt△ABC中,∠C=90°,如果∠A≠30°,45°或60°,那么∠A的对边BC与斜边AB的比值仍然固定不变吗?比值是否也只与∠A的大小有关呢?[实践]请同学们画出一个Rt△ABC,使得∠C=90°,∠A=50°,测量、计算推理证明猜想比值固定11=AACC ∠∠,∠∠90°111RRtABCtABC∴△∽△1111BCABBCAB∴1111BCBCABAB∴得出...