优翼八下数学教学课件(HK)小结与复习第19章四边形要点梳理一、多边形的内角和与外角和多边形的内角和等于(n-2)×180°多边形的外角和等于360°正多边形每个内角的度数是正多边形每个外角的度数是(2)180nn,360.n几何语言文字叙述对边平行对边相等对角相等∴AD=BC,AB=DC. 四边形ABCD是平行四边形,∴∠BAD=∠BCD,∠ABC=∠ADC. 四边形ABCD是平行四边形,二、平行四边形的性质对角线互相平分 四边形ABCD是平行四边形,∴OA=OC,OB=OD. 四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.BCDAO两条平行线之间的距离处处相等几何语言文字叙述两组对边相等一组对边平行且相等∴四边形ABCD是平行四边形. AD=BC,AB=DC,∴四边形ABCD是平行四边形. AB=DC,AB∥DC,三、平行四边形的判定对角线互相平分∴四边形ABCD是平行四边形. OA=OC,OB=OD,两组对边分别平行(定义)∴四边形ABCD是平行四边形. AD∥BC,AB∥DC,BCDAO1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理:三角形两边中点连线平行于第三边,并且等于第三边的一半.四、三角形的中位线用符号语言表示: DE是△ABC的中位线,∴DE∥BC,1.2DEBCEABCD对边角对角线平行且相等平行且四边相等平行且四边相等四个角都是直角对角相等邻角互补四个角都是直角互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角互相垂直且平分,每一条对角线平分一组对角五、矩形、菱形、正方形的性质条件①定义:有一个角是直角的平行四边形.②定理1:对角线相等的平行四边形.③定理2:三个角是直角的四边形.①定义:一组邻边相等的平行四边形.②定理1:四条边都相等的四边形.③定理2:对角线互相垂直的平行四边形.①定义:有一个角是直角且一组邻边相等的平行四边形.②有一组邻边相等的矩形.③有一个角是直角的菱形.六、矩形、菱形、正方形的判定方法考点讲练考点一多边形的内角和与外角和例1已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数.14解:设此多边形的每个外角的度数为x,则每个相邻内角的度数为4x.则有x+4x=180°,解得x=36°.∴这个多边形的边数为360°÷36°=10.1.一个正多边形的每一个内角都等于120°,则其边数是.6【解析】因为该多边形的每一个内角都等于120°,所以它的每一个外角都等于60°.所以边数是6.归纳拓展在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其...