6.4随机现象的变化趋势利用坐标系研究某些随机现象的变化趋势以及随机现象之间的相关关系.学习目标客观世界中,相互联系的随机现象中变量之间的相关关系有的能够确定,如一次函数,二次函数等.有的一个随机产生的数据确定后,另一个与它相关的值却不能够完全确定.如粮食产量与农作物的施肥量之间的关系,在一定范围内,施肥量多,农作物的产量就高,但不能由施肥量完全确定农作物的产量.课程导入为研究青少年身高和体重的关系,九年级一班数学兴趣小组随机抽取了本班13名男生,测量出他们的身高(单位:cm)和体重(单位:kg),得到下表中的两组数据:身高153147153145170174165170159180172162170体重41454842607152645668674851怎样将表中的两组数据直观的表示出来?身高和体重有什么关系吗?直线b比直线a能够更近似地代表列表中各点的分布,所以直线b比直线a能更好地反映样本中男生的体重与身高的相关关系,即体重随着身高的增加呈现一种线性的增长趋势.140身高/cm1501601701801904080706050体重/kg··············ab0某超市随机抽取了12天的日利润与日营业额,如下表表示:日营业额/万元14.15.18.07.25.812.39.810.89.315.14.213.2日利润/万元2.81.01.41.31.42.22.01.81.92.31.12.3(1)在直角坐标系中,用横轴表示日营业额、纵轴表示日利润,描述12个数对对应的数据点;(2)在坐标系中,画出一条直线,使它能近似反映样本中日利润与营业额的相关关系;(3)估计这家超市的日营业额为16万元时,日利润大约是多少?(3)在这条直线上取横坐标为16的点,其坐标为2.8,所以,估计这家超市的日营业额为16万元时,日利润大约是2.8万元.解:(1)如图所示4日营业额/万元68101214132.521.5日利润/万元··············16180(2)如图所示练习1.下列事件只能用近似直线表示的是A.当速度一定时,路程与时间之间的关系B.当矩形的长一定时,面积与宽之间的关系C.当汽车的单位耗油量一定时,耗油量与路程之间的关系D.小明的年龄与体重之间的关系2.某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,则m的值为A.3B.5C.7D.9√√t/℃-3-2-101234v/(m/s)329.1329.5330.5331331.7332.1332.9333.4为了研究声音在空气里的传播速度v(m/s)与温度t()℃之间的关系,实验人员从测得的一组数据中随机抽取了如下表的数据,据此,能否确定v与t的近似函数表达式?解:在坐标系中描出这些值所对应的点,我们发现这些点大...