第3章图形的相似3.6位似第2课时1.理解平面直角坐标系中,位似图形对应点的坐标之间的联系.2.会用图形的坐标的变化表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律.(重点、难点)3.了解四种图形变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出来这些变换.学习目标导入新课复习引入1.两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做,这个交点叫做.位似图形上任意一对对应点到位似中心的距离之比等于,对应线段.2.如何判断两个图形是不是位似图形?位似图形位似中心相似比(或位似比)平行或者在一条直线上3.画位似图形的一般步骤有哪些?4.基本模型:我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标之间的关系表示某些平移、轴对称和旋转(中心对称).那么,位似是否也可以用两个图形坐标之间的关系来表示呢?讲授新课1.在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小,观察对应点之间坐标的变化.13合作探究平面直角坐标系中的位似变换24646B'-2-4-4xyABA'A"B"O如图,把AB缩小后A,B的对应点为A′(,),B'(,);A"(,),B"(,).2120-2-1-202.△ABC三个顶点坐标分别为A(2,3),B(2,1),C(5,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化.24646-2-4-4xyAB2810C-2-6-8-10-8B'A'C'A"B"C"如图,把△ABC放大后A,B,C的对应点为A'(,),B'(,),C'(,);A"(,),B"(,),C"(4642104-4-6-4-2-10-4问题1在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作几个?问题2所作位似图形与原图形在原点的同侧,那么对应顶点的坐标的比与其相似比是何关系?如果所作位似图形与原图形在原点的异侧呢?1.在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作两个.2.当位似图形在原点同侧时,其对应顶点的坐标的比为k;当位似图形在原点两侧时,其对应顶点的坐标的比为-k.3.当k>1时,图形扩大为原来的k倍;当0<k<1时,图形缩小为原来的k倍.归纳:1.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1/2后得到线段CD,则端点D的坐标为()A.(2,2)B.(2,1)C.(3,2)D.(3,1)练一练DxyABCD2.△ABC三个顶点A(3,6),B(6,2),C(2,-1),以原点为位似中心,得到的位似图形△A′B′C′三...