1.1等腰三角形第一章三角形的证明第1课时三角形的全等和等腰三角形的性质【学习目标】1.复习全等三角形的判定定理及相关性质;2.理解并掌握等腰三角形的性质及推论,能够用其解决简单的几何问题.【学习重点】等腰三角形性质及推论的理解及应用.【学习难点】等腰三角形三线合一的性质的理解及应用.教学目标问题1:图中有些你熟悉的图形吗?它们有什么共同特点?斜拉桥梁埃及金字塔体育观看台架新课引入问题2:建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道其中反映了什么数学原理?七下“轴对称”中学过的等腰三角形的“三线合一”.思考:你能证明等腰三角形的“三线合一”吗?问题3在八上的“平行线的证明”这一章中,我们学了哪8条基本事实?1.两点确定一条直线;2.两点之间线段最短;3.同一平面内,过一点有且只有一条直线与已知直线垂直;4.同位角相等,两直线平行;5.过直线外一点有且只有一条直线与这条直线平行;6.两边及其夹角分别相等的两个三角形全等;7.两角及其夹边分别相等的两个三角形全等;8.三边分别相等的两个三角形全等.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题:你能运用基本事实及已经学过的定理证明上面的推论吗?弄清楚证明一个命题的一般步骤是解题的关键证明一个命题的一般步骤:(1)弄清题设和结论;(2)根据题意画出相应的图形;(3)根据题设和结论写出已知和求证;(4)分析证明思路,写出证明过程.全等三角形的判定和性质已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明: ∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E). ∠A=∠D,∠B=∠E(已知),∴∠C=∠F(等量代换). BC=EF(已知),∴△ABC≌△DEF(ASA).FEDCBA定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等.总结归纳问题1:你还记得我们探索过的等腰三角形的性质吗?推论:等腰三角形顶角的平分线,底边上的中线底边上的高互相重合(三线合一).问题2:你能利用已有的公理和定理证明这些结论吗?定理:等腰三角形的两个底角相等.问题引入等腰三角形的性质及其推论等腰三角形的两个底角相等.ABC已知:△ABC中,AB=AC,求证:∠B=C.思考:如何构造两个全等的三角形?定理:等...