《新教案》word版课题中心对称【学习目标】1.理解并掌握中心对称及中心对称图形的概念及性质.2.能够根据中心对称及中心对称图形的性质进行作图.【学习重点】掌握中心对称及中心对称图形的概念,并识别两种图形.【学习难点】根据中心对称性质进行作图.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案,教会学生落实重点.方法指导:中心对称实际是旋转变换的一种特殊形式,中心对称要求旋转必须为180°.学习笔记:一、情景导入生成问题旧知回顾:1.什么是旋转?答:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.2.如图,D为等腰直角△ABC内一点,△ABD经过旋转后到达△ACP的位置.(1)旋转中心是A;(2)旋转角是90°;(3)△ADP是等腰直角三角形.二、自学互研生成能力【自主探究】阅读教材P81-82的内容,回答下列问题:1.什么是中心对称?答:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它的对称中心.2.中心对称的性质是什么?答:中心对称的两个图形中,对应点所连线段经过对称中心且被对称中心平分.范例1:如图所示的4组图形中,左边图形与右边图形不是中心对称的是(D)ABCD仿例:在下列图形中,图形(1)与图形(4)成轴对称;图形(2)与图形(3)成中心对称.范例2:如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是(D)A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′仿例1:如图,△ABC与△DEF关于点O成中心对称,则AB=DE,BC∥EF,AC=DF.归纳:中心对称图形与中心对称既有区别又有联系,区别:中心对称图形为一个图形,而中《新教案》word版心对称是两个图形.联系:它们都旋转180°,我们把成中心对称的两个图形看成一个“整体”,则成为中心对称图形,把中心对称图形的两个部分看成“两个图形”,则它们中心对称.行为提示:找出自己不明白的问题,先对学,再群学,对照答案,提出疑惑,小组内解决不了的问题,写在小黑板上,在小组展示的时候解决.学习笔记:检测可当堂完成.仿例2:如图,直线l与直线m交于点P,作出△ABC关于点P成中心对称的图形.【自主探究】阅读教材P82的内容,回答下列问题:什么是中心对称图形?答:把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形...