免费下载网址http://jiaoxue5u.ys168.com/新疆石河子市第八中学九年级数学《2413弧、弦、圆心角》教案教学任务分析教学目标知识技能通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理;数学思考(1)通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力;(2)利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理.解决问题学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题.情感态度培养学生积极探索数学问题的态度及方法.重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.教学流程安排活动流程图活动内容和目的活动1做一做议一议活动2巩固练习活动3议一议活动4小结,布置作业创设问题情境,激发学生兴趣,引出本节内容同时探究圆心角、弧、弦之间关系定理.巩固对知识的理解.拓展创新、应用提高,培养学生的应用意识和创新能力.[巩固新知,归纳总结.教学过程设计一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方解压密码联系qq1119139686加微信公众号jiaoxuewuyou九折优惠!淘宝网址:jiaoxue5u.taobao.com免费下载网址http://jiaoxue5u.ys168.com/向一致,否则当OA与OA′重合时,OB与O′B′不能重合.(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作.由已知条件可知∠AOB=∠A′O′B′;由两圆的半径相等,可以得到∠OAB=∠OBA=∠O′A′B′=∠O′B′A′;由△AOB≌△A′O′B′,可得到AB=A′B′;由旋转法可知''ABAB.在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以AB和''AB重合,弦AB与弦A′B′重合,即''ABAB,AB=A...