基于自步学习的开放集领域自适应刘星宏1,2周毅1,2周涛3秦杰41(东南大学计算机科学与工程学院南京211189)2(新一代人工智能技术与交叉应用教育部重点实验室(东南大学)南京211189)3(南京理工大学计算机科学与工程学院南京210094)4(南京航空航天大学计算机科学与技术学院南京210016)(xhoml158@gmail.com)Self-PacedLearningforOpen-SetDomainAdaptationLiuXinghong1,2,ZhouYi1,2,ZhouTao3,andQinJie41(SchoolofComputerScienceandEngineering,SoutheastUniversity,Nanjing211189)2(KeyLaboratoryofNewGenerationArtificialIntelligenceTechnologyandItsInterdisciplinaryApplications(SoutheastUniversity),MinistryofEducation,Nanjing211189)3(SchoolofComputerScienceandEngineering,NanjingUniversityofScienceandTechnology,Nanjing210094)4(CollegeofComputerScienceandTechnology,NanjingUniversityofAeronauticsandAstronautics,Nanjing210016)AbstractDomainadaptationtacklesthechallengeofgeneralizingknowledgeacquiredfromasourcedomaintoatargetdomainwithdifferentdatadistributions.Traditionaldomainadaptationmethodspresumethattheclassesinthesourceandtargetdomainsareidentical,whichisnotalwaysthecaseinreal-worldscenarios.Open-setdomainadaptation(OSDA)addressesthislimitationbyallowingpreviouslyunseenclassesinthetargetdomain.OSDAaimstonotonlyrecognizetargetsamplesbelongingtoknownclassessharedbysourceandtargetdomainsbutalsoperceiveunknownclasssamples.Traditionaldomainadaptationmethodsaimtoaligntheentiretargetdomainwiththesourcedomaintominimizedomainshift,whichinevitablyleadstonegativetransferinopen-setdomainadaptationscenarios.Weproposeanovelframeworkbasedonself-pacedlearningtodistinguishknownandunknownclasssamplesprecisely,referredtoasSPL-OSDA(self-pacedlearningforopen-setdomainadaptation).Toutilizeunlabeledtargetsamplesforself-pacedlearning,wegeneratepseudolabelsanddesignacross-domainmixupmethodtailoredforOSDAscenarios.Thisstrategyminimizesthenoisefrompseudolabelsandensuresourmodelprogressivelytolearnknownclassfeaturesofthetargetdomain,beginningwithsimplerexamplesandadvancingtomorecomplexones.Toimprovethereliabilityo...