第44卷第2期2023年6月D0I:10.13340/j.jsmu.2023.02.010上海海事大学学报JournalofShanghaiMaritimeUniversityVol.44No.2Jun.2023文章编号:1672-9498(2023)02-0057-05基于Elman神经网络修正的ARIMA预测模型汪旭明",张均东",刘一帆²,张刚lc(1.大连海事大学a.船舶电气工程学院;b.轮机工程学院;c.航海学院,辽宁大连116026;2.日本船级社(中国)有限公司,上海200336)摘要:为实现船舶设备的预测性维护,提高轮机人员工作效率,提出一种由Elman神经网络修正的自回归综合移动平均(autoregressiveintegratedmovingaverage,ARIMA)模型用于设备运行数据预测。对输入数据进行平稳化处理,建立相应的ARIMA模型;引入Elman神经网络对ARIMA模型的预测残差进行分析并建立Elman残差预测模型;将ARIMA模型的预测值与Elman残差预测模型的预测值相加,得到最终预测值。采用“育鲲”号船某航次中冷器的海水出口温度数据进行模型的训练和验证,将Elman-ARIMA组合模型与单一模型预测结果的平均绝对百分比误差进行对比分析,结果表明,Elman-ARIMA组合模型具有较好的预测性能。关键词:时间序列;Elman-ARIMA组合模型;数据预测;残差修正中图分类号:U672.7+1ModifiedARIMApredictionmodelbasedonElmanneuralnetwork文献标志码:AWANGXuming",ZHANGJundong",LIUYifan’,ZHANGGang"1c(1.a.MarineElectricalEngineeringCllege;b.MarineEngineeringCollege;c.NavigationCollege,DalianMaritimeUniversity,Dalian116026,Liaoning,China;2.NipponKaijiKyokai(China)Co.,Ltd.,Shanghai200336,China)Abstract:Inordertorealizethepredictivemaintenanceofshipequipmentsandimprovetheefficiencyofmarineengineers,anautoregressiveintegratedmovingaverage(ARIMA)modelmodifiedbytheElmanneuralnetworkisproposedfortheequipmentoperationdataprediction.Theinputdataaresmoothed,andtheARIMAmodelisestablished;theElmanneuralnetworkisintroducedtoanalyzethepredictionresidualsoftheARIMAmodel,andestablishtheElmanresidualpredictionmodel;thepredictedvalueoftheARIMAmodelisaddedtothepredictedvalueoftheElmanresidualpredictionmodeltoobtainthefinalpredictedvalue.Theseawateroutlettemperaturedataoftheship“Yukun"intercoolerarecollectedformodeltrainingandvalidation,themeanabsolutepercentageerrorsofpredictionresultsoftheElman-ARIMAcombi...