2023年全国新高考Ⅱ卷一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在复平面内,对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据复数的乘法结合复数的几何意义分析判断.【详解】因为,则所求复数对应的点为,位于第一象限.故选:A.2.设集合,,若,则().A.2B.1C.D.【答案】B【解析】【分析】根据包含关系分和两种情况讨论,运算求解即可.【详解】因为,则有:若,解得,此时,,不符合题意;若,解得,此时,,符合题意;综上所述:.故选:B.3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A.种B.种C.种D.种【答案】D【解析】【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,根据组合公式和分步计数原理则不同的抽样结果共有种.故选:D.4.若为偶函数,则().A.B.0C.D.1【答案】B【解析】【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.【详解】因为为偶函数,则,解得,当时,,,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.5.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则().A.B.C.D.【答案】C【解析】【分析】首先联立直线方程与椭圆方程,利用,求出范围,再根据三角形面积比得到关于的方程,解出即可.【详解】将直线与椭圆联立,消去可得,因为直线与椭圆相交于点,则,解得,设到的距离到距离,易知,则,,,解得或(舍去),故选:C.6.已知函数在区间上单调递增,则a的最小值为().A.B.eC.D.【答案】C【解析】【分析】根据在上恒成立,再根据分参求最值即可求出.【详解】依题可知,在上恒成立,显然,所以,设,所以,所以在上单调递增,,故,即,即a的最小值为.故选:C.7.已知为锐角,,则().A.B.C.D.【答案】D【解析】【分析】根据二倍角公式(或者半角公式)即可求出.【详解】因为,而为锐角,解得:.故选:D.8.记为等比数列的前n项和,若,,则().A.120B.85C.D.【答案】C【解析】【分析】方法一:根据等比数列的前n项和公式求出公比,再根据的关系即可解出;方法二:根据等比数列的前n项和的性质求解.【详解】方法一:设...