2020高考仿真模拟(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U为实数集R,已知集合M={x|x2-4>0},N={x|x2-4x+3<0},则图中阴影部分所表示的集合为()A.{x|x<-2}B.{x|x>3}C.{x|1≤x≤2}D.{x|x≥3或x<-2}答案D解析由题可得M={x|x2-4>0}={x|x>2或x<-2},N={x|x2-4x+3<0}={x|1f(e)>f(3)B.f(3)>f(e)>f(2)C.f(e)>f(2)>f(3)D.f(e)>f(3)>f(2)答案D解析f(x)=,f′(x)=,令f′(x)=0,解得x=e,当x∈(0,e)时,f′(x)>0,函数f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,函数f(x)单调递减,故f(x)在x=e处取得最大值f(e),f(2)-f(3)=-==<0,∴f(2)f(3)>f(2),故选D.6.公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O为圆心的大圆直径为1,以AB为直径的半圆面积等于AO与BO所夹四分之一大圆的面积,由此可知,月牙形(图中阴影部分)区域的面积可以与一个正方形的面积相等.现在在两个圆所围成的区域内随机取一点,则该点来自于阴影所示月牙形区域...