添加微信:car4900,免费领小学资料添加微信:car4900,免费领小学资料第六讲加乘原理生活中常有这样的情况,就是在做一件事时,有几类不同的方法,在具体做的时候,只要采用一类中的一种方法就可以完成,并且几类方法是互不影响的。在每一类方法中,又有几种可能的做法,那么考虑完成这件事所有可能的做法,就要用到加法原理来解决。还有这样的一种情况就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事情共有多少种方法,就要用到乘法原理来解决。加法原理:乘法原理:1.加法原理和乘法原理是计数方法中常用的重要原理,在应用时要注意它们的区别。2.加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。3.乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积。例1:一个盒子内装有5个小球,另一个盒子内装有9个小球,所有这些小球颜色各不相同。问:①从两个盒子内任取一个小球,有多少种不同的取法?②从两个盒子内各取一个小球,有多少种不同的取法?添加微信:car4900,免费领小学资料添加微信:car4900,免费领小学资料例2:从1到399的所有自然数中,不含有数字3的自然数有多少个?例3:用5种颜色给图1的五个区域染色,相邻的区域染不同的颜色,每个区域染一种颜色问:共有多少种不同的染色方法?例4:学校羽毛球队有12名男队员,10名女队员。(l)要挑选一名男队员和一名女队员组成一对男、女混合双打选手,有多少种不同的搭配方法?(2)该羽毛球队在比赛中获团体总分第一名,学校选一名运动员去领奖,有多少种选法?例5:找出图2中从A点出发,经过C点和D点到B点的最短路线,共有多少条?例6:现有壹元的人民币4张,贰元的人民币2张,伍元的人民币5张,如果从中至少取一张,至多取11张,那么共可以配成多少种不同的钱数?例7:由数字1、2、3、4、5、6、7、8、9可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为9的没有重复数字的三位数?⑤百位为9的没有重复数字的三位偶数?A1.从0、1、2、3、4这五个数字中任取3个,可以组成______个无重复数字的三位数。添加微信:car4900,免费领小学资料添加微信:car4900,免费领小学资料2.在m×n的方格纸上,取两个相邻的小方格共有______种取法。3.书架上有不同的数学书20本,不同的语文书10本,现从书架上取书...