2017年湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1.(3分)计算a2•a4的结果为()A.a2B.a4C.a6D.a82.(3分)如图示,数轴上点A所表示的数的绝对值为()A.2B.﹣2C.±2D.以上均不对3.(3分)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°4.(3分)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>bB.a+2>b+2C.﹣a<﹣bD.2a>3b5.(3分)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155°D.160°6.(3分)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形7.(3分)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:0010﹣:0010:0011﹣:0014:0015﹣:0015:0016﹣:00进馆人数50245532第1页(共28页)出馆人数30652845A.9:0010﹣:00B.10:0011﹣:00C.14:0015﹣:00D.15:0016﹣:008.(3分)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)9.(3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形10.(3分)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle17801855﹣)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5B.4C.D.二、填空题(每小题3分,满分24分)11.(3分)如图示在△ABC中∠B=.第2页(共28页)12.(3分)分解因式:m3mn﹣2=.13.(3分)分式方程﹣=0的解为.14.(3分)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是.15.(3分)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.16.(3分)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与...