专题04推理能力课之和角平分线有关的辅助线重难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,中,,的角平分线、相交于点,过作交的延长线于点,交于点,则下列结论:①;②;③;④四边形,其中正确的个数是()A.4B.3C.2D.1【答案】B【分析】根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可.【详解】解: 在△ABC中,∠ACB=90°,∴∠CAB+∠ABC=90° AD、BE分别平分∠BAC、∠ABC,∴∠BAD=,∠ABE=∴∠BAD+∠ABE=∴∠APB=180°-(∠BAD+∠ABE)=135°,故①正确;∴∠BPD=45°,又 PF⊥AD,∴∠FPB=90°+45°=135°∴∠APB=∠FPB又 ∠ABP=∠FBP更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.com更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.comBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=AB,PA=PF,故②正确;在△APH与△FPD中 ∠APH=∠FPD=90°∠PAH=∠BAP=∠BFPPA=PF∴△APH≌△FPD(ASA),∴AH=FD,又 AB=FB∴AB=FD+BD=AH+BD,故③正确;连接HD,ED, △APH≌△FPD,△ABP≌△FBP∴,,PH=PD, ∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP,∴ 故④错误,∴正确的有①②③,故答案为:B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意AAA和SAS不能判定两个三角形全等.2.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【答案】D【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:① BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;② BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.com更多资料添加微信号:DEM20...