2023,59(6)滚动轴承是旋转机械中最关键的部位之一,其运行状态决定机器能否正常运行。当滚动轴承发生故障时会造成巨大的经济损失并威胁到操作人员的生命安全[1]。随着大数据时代的来临,越来越多基于数据驱动的方法应用于滚动轴承的故障诊断,在数据量充足的情况下这些方法表现出了优越的性能。相关学者总结了大量关于数据驱动的优秀文献综述,例如,Lei等[2]按照时间线将故障诊断分为三部分:传统机器学习,深度学习和迁移学习,并讨论了如何为机器学习提供大量的数据。Cen等[3]综述了最近几年基于数据驱动的研究成果,将其分为浅层机器学习、深度学习和迁移学习三个框架,并总结了各种方法的适用场景。但是基于数据驱动的故障诊断方法存在一个不可避免的弊端:在小样本的情况下,难以取得理想的效果。而在实际生产过程中,由于生产工艺的要求,机器绝大部分的时间都处于正常运转状态,只能获得少量故障样本,这就要求模型具有较高的泛化性能和鲁棒性。小样本条件下的轴承故障诊断问题将成为未来的热门小样本轴承故障诊断研究综述司伟伟1,2,岑健1,2,伍银波1,2,胡学良3,何敏赞3,杨卓洪1,2,陈红花1,21.广东技术师范大学自动化学院,广州5106652.广州市智慧建筑设备信息集成与控制重点实验室,广州5016653.中国石油化工股份有限公司广州分公司,广州510726摘要:随着数据时代的来临,基于数据驱动的轴承故障诊断方法表现出了优越的性能,但是此类方法依赖大量标记数据,而在实际生产过程中很难收集到大量的数据,因此小样本的轴承故障诊断具有很高的研究价值。对小样本条件下的轴承故障诊断方法进行了回顾,并将其分为两类:基于数据的方法和基于模型的方法。其中基于数据的方法是从数据角度对原始样本进行扩充;基于模型的方法是指利用模型优化特征提取或者提高分类精度等。总结了当前小样本条件下故障诊断方法的不足,并展望了小样本轴承故障诊断的未来。关键词:小样本;故障诊断;数据扩充;元学习;迁移学习文献标志码:A中图分类号:TP206+.3doi:10.3778/j.issn.1002-8331.2208-0139ReviewofResearchonBearingFaultDiagnosiswithSmallSamplesSIWeiwei1,2,CENJian1,2,WUYinbo1,2,HUXueliang3,HEMinzan3,YANGZhuohong1,2,CHENHonghua1,21.SchoolofAutomation,GuangdongPolytechnicNormalUniversity,Guangzhou510665,China2.GuangzhouIntelligentBuildingEquipmentInformationIntegrationandControlKeyLaboratory,Guangzhou50...