第43卷第3期2023年6月投稿网址:http://journal.lnpu.edu.cn辽宁石油化工大学学报JOURNALOFLIAONINGPETROCHEMICALUNIVERSITYVol.43No.3Jun.2023结构优化深度网络的高压断路器机械故障诊断姜楠1,罗林1,王乔1,侯维2(1.辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001;2.中国石油抚顺石化公司石油三厂,辽宁抚顺113001)摘要:高压断路器操作过程中的振动信号反映断路器的机械状态。针对基于浅层的振动信号分析模型的特征提取及故障诊断精度等方面存在的不足,提出了一种基于遗传算法优化的卷积神经网络高压断路器故障诊断方法。利用遗传算法的全局寻优能力,通过遗传算法的选择、交叉和变异等操作获得最优初始网络结构参数及全连接层神经元数等,进而优化卷积神经网络,并将优化后的卷积神经网络应用于高压断路器的故障诊断。结果表明,所提方法的诊断性能优于未进行优化的卷积神经网络、动态支持向量机和多层感知机。关键词:高压断路器;故障诊断;遗传算法;卷积神经网络中图分类号:TH814文献标志码:Adoi:10.12422/j.issn.1672⁃6952.2023.03.015StructuralOptimizationDeepNetworkforMechanicalFaultDiagnosisofHighVoltageCircuitBreakersJiangNan1,LuoLin1,WangQiao1,HouWei2(1.SchoolofInformationandControlEngineering,LiaoningPetrochemicalUniversity,FushunLiaoning113001,China;2.No.3RefineryofFushunPetrochemicalCompany,PetroChina,FushunLiaoning113001,China)Abstract:Thevibrationsignalduringtheoperationofhighvoltagecircuitbreakercanreflectthemechanicalstateofcircuitbreaker.Aimingattheshortcomingsoffeatureextractionandfaultdiagnosisaccuracyofshallowvibrationsignalanalysismodel,afaultdiagnosismethodofhighvoltagecircuitbreakerbasedonconvolutionalneuralnetworkoptimizedbygeneticalgorithmwasproposed.Usingtheglobaloptimizationabilityofgeneticalgorithm,theoptimalinitialnetworkstructureparametersandthenumberofneuronsinthewholeconnectionlayerwereobtainedthroughtheselection,crossoverandmutationofgeneticalgorithmtooptimizetheconvolutionalneuralnetwork,andtheoptimizedconvolutionalneuralnetworkisappliedtothefaultdiagnosisofhighvoltagecircuitbreaker.Theresultsshowthatthediagnosisperformanceoftheproposednetworkmodelisbetterthanthatofconvolutionneu...