引用格式:黄玉玲,陶昕辰,朱涛,等.残差对抗目标检测算法的遥感图像检测[J].电光与控制,2023,30(7):63-67.HUANGYL,TAOXC,ZHUT,etal.Aremotesensingimagedetectionmethodbasedonresidualsadversarialobjectdetectionalgorithm[J].ElectronicsOptics&Control,2023,30(7):63-67.残差对抗目标检测算法的遥感图像检测黄玉玲1,陶昕辰1,朱涛1,司俊文1,吕昌东1,吴迪1,沈占锋1,2(1.苏州大学,江苏苏州215000;2.中国科学院空天信息创新研究院,北京100000)摘要:针对遥感图像目标检测的目标尺度小、分辨率过低的问题,提出残差对抗目标检测算法的遥感图像检测方法。通过残差对抗的方式对图像的特征信息进行重构,完成图像分辨率的提升。在Backbone主干网络提取图像特征信息的基础上由Neck结构将特征进行融合,最后由CIoU_Loss损失函数提高定位回归精度,提高模型性能。实验结果表明,与其他算法相比,在平均精确率、平均召回率、平均综合指标F1值、平均mAP值方面分别提高了8.15%,6.9%,7.15%,6.75%。所提算法在低分辨率遥感图像目标检测方面准确性较高,对遥感图像小目标检测效果较好。关键词:遥感;目标检测;超分辨率;残差对抗中图分类号:P237文献标志码:Adoi:10.3969/j.issn.1671-637X.2023.07.011ARemoteSensingImageDetectionMethodBasedonResidualsAdversarialObjectDetectionAlgorithmHUANGYuling1,TAOXinchen1,ZHUTao1,SIJunwen1,LYUChangdong1,WUDi1,SHENZhanfeng1,2(1.SoochowUniversity,Suzhou215000,China;2.AerospaceInformationResearchInstitute,ChineseAcademyofSciences,Beijing100000,China)Abstract:Aimingattheproblemsofsmallobjectscaleandlowresolutioninremotesensingimageobjectdetection,aremotesensingimagedetectionmethodbasedonresidualadversarialobjectdetectionalgorithmisproposedinthispaper.Thefeatureinformationoftheimageisreconstructedthroughresidualadversarialism,soastorealizetheimprovementofimageresolution.BasedonimagefeatureinformationwhichisextractedbyBackbonenetwork,thefeaturesarefusedbyNeckstructure.Finally,theCIoU_Lossfunctionisdesignedtoincreasetheregressionaccuracy,andimprovemodelperformance.Experimentalresultsshowthat,comparedwithotheralgorithms,themeanprecision,meanrecall,meanF1-scoreandmeanmAPvalueofthisalgorithmareimpr...