文章编号:1005-5630(2023)02-0018-08DOI:10.3969/j.issn.1005-5630.2023.002.003基于轻量级网络的光纤传感振动信号识别陈玲玲,李柏承,张大伟,杨涵,吴春波(上海理工大学光电信息与计算机工程学院,上海200093)摘要:虽然传统卷积神经网络的识别率很高,但是其庞大的参数量会导致工业部署困难,且识别响应速度慢。引入轻量级卷积神经网络MobileNet,使用深度可分离卷积替代传统卷积,大大减少了模型参数量。以MobileNet为基准网络,实现了基于一维轻量级网络MobileNet-18的Φ-OTDR周界入侵事件识别。通过实验对比了不同结构下的网络识别率和识别速度,在保证模型的准确率不会大幅度降低的情况下,选取MobileNet-18作为最佳模型。采集了攀爬、切割、风吹、举起、拉动和走动这6种周界光纤入侵信号。在6种光纤入侵信号识别中,MobileNet-18达到了识别率为98.33%,响应时间为9.27ms的最佳效果关键词:卷积神经网络;轻量级网络;深度可分离卷积;光纤信号;周界安全中图分类号:TN913.7文献标志码:AOpticalfibersensingvibrationsignalrecognitionbasedonlightweightnetworkCHENLingling,LIBaicheng,ZHANGDawei,YANGHan,WUChunbo(SchoolofOptical-ElectricalandComputerEngineering,UniversityofShanghaiforScienceandTechnology,Shanghai200093,China)Abstract:Basedontheapplicationofdistributedopticalfibersensingsysteminthefieldofperimetersecuritymonitoring,thereareproblemssuchasslowresponsespeedandlowrecognitionrate.Althoughtherecognitionrateofthetraditionalconvolutionalneuralnetworkisveryhigh,itshugeamountofparametersmakesindustrialdeploymentdifficultandtherecognitionresponsespeedisslow.ThispaperintroducesthelightweightconvolutionalneuralnetworkMobileNet,whichusesdepth-separableconvolutiontoreplacethetraditionalconvolution,whichgreatlyreducestheamountofmodelparameters.ThispaperusesMobileNetasthebenchmarknetworktoimplementaone-dimensionallightweightnetworkbasedonMobileNet-18Φ-OTDRperimeterintrusioneventrecognition,comparedthenetworkrecognitionrateandrecognitionspeedunderdifferentstructuresthroughexperiments,andselectedMobileNet-18asthebestmodelundertheconditionthattheaccuracyofthemodelwouldnotbegreatlyreduced.Intheexperiment,six收稿日期:2022-12-02基...