第44卷第3期2023年6月Vol.44No.3June2023内燃机工程ChineseInternalCombustionEngineEngineering基于降噪–残差神经网络的发动机部分失火故障诊断庞皓乾1,张攀1,王文2,王彦军1,邹佳华1,高文志1(1.天津大学内燃机燃烧学国家重点实验室,天津300354;2.中国重汽集团青岛重工有限公司,青岛266111)PartialMisfireFaultDiagnosisofAnEngineBasedonNoiseReduction–ResidualNeuralNetworkPANGHaoqian1,ZHANGPan1,WANGWen2,WANGYanjun1,ZOUJiahua1,GAOWenzhi1(1.StateKeyLaboratoryofEngines,TianjinUniversity,Tianjin300354,China;2.SINOTRUCKQingdaoHeavyIndustryCo.,Ltd.,Qingdao266111,China)Abstract:Afaultdiagnosismethodof“noisereduction–residualneuralnetwork”basedonwaveletthresholddenoisingandresidualneuralnetworkwasproposedforpartialmisfirefaultdiagnosisofenginecylinders.Combiningthenoisereductionanddeeplearningalgorithm,thesignalwasdenoisedbywaveletthresholdandfedintotheresidualneuralnetworkforfaultdiagnosis.Unlikethepreviousresidualnetwork,theshortresidualblockwouldbeutilizedtofurtherpreventnetworkdegradation.Besides,thelargeconvolutionkernelwasalsousedtoexpandtheconvolutionfieldoflongdatainputandimprovetheabilitytoextractfaultcharacteristics.Experimentalresultsshowthatthismethodcannotonlyachievemorethan97%faultdiagnosisaccuracyfortheoperationconditionswithouttraining,butalsoachievehighdiagnosisaccuracyforthenoisysignalswithGaussiannoise.Theperformanceoftheproposedmethodisprovedtobemoresuperiorityandexcellentthanthoseofothermisfirefaultdiagnosisalgorithms.摘要:针对发动机单缸部分失火故障,提出基于小波阈值降噪和残差神经网络的“降噪–残差神经网络”故障诊断方法。通过降噪与深度学习算法相结合,将小波阈值降噪后的振动信号输入到残差神经网络进行故障诊断;使用短残差块进一步防止网络的退化,并利用大卷积核增大长数据输入的卷积视野,提高信号故障特征的提取能力。测试结果证明该方法不仅实现了未参与训练的运转工况97%以上的故障诊断准确率,而且对于加入高斯噪声后的含噪声信号也能实现较高的诊断准确率。通过与其他故障诊断网络进行对比证明了该方法的优越性。关键词:部分失火;故障诊断;振动信号;小波阈值降噪;...