2023年第47卷第5期JournalofMechanicalTransmission基于广义变分模式分解的滚动轴承故障微弱特征提取郭燕飞陈高华王清华(太原科技大学电子信息工程学院,山西太原030024)摘要针对变分模式分解(VariationalModeDecomposition,VMD)算法在微弱特征分量按需提取方面存在的不足,提出采用广义变分模式分解(GeneralizedVariationalModeDecomposition,GVMD)算法提取滚动轴承故障微弱特征。GVMD算法具有优良的频域多尺度定频分解性能,算法频谱分解位置和频域分解尺度可由先验中心频率和尺度参数灵活控制,实现按需分解。仿真和实验分析结果表明,与VMD算法相比,GVMD算法能够充分利用轴承故障频率信息和带宽信息,按需准确提取轴承故障微弱特征分量;且具有较强的噪声鲁棒性。关键词变分模式分解滚动轴承故障微弱信号提取按需分解WeakFeatureExtractionofRollingBearingFaultBasedonGeneralizedVariationalModeDecompositionGuoYanfeiChenGaohuaWangQinghua(SchoolofElectronicInformationEngineering,TaiyuanUniversityofScienceandTechnology,Taiyuan030024,China)AbstractAimingatthedeficiencyofvariationalmodedecomposition(VMD)inon-demandextractionofweakfeaturecomponents,ageneralizedVMD(GVMD)isproposedtoextracttheweakfeaturesofrollingbearingfaults.GVMDhasexcellentmulti-scaleandfixedfrequencydecompositionperformanceinthefrequencydomain.Thespectrumdecompositionpositionsandfrequencydomaindecompositionscalesofthealgorithmcanbeflexiblydominatedbypriorcenterfrequenciesandscaleparameterstorealizeon-demanddecomposition.Thesimulationandexperimentalresultsshowthat,comparedwithVMD,GVMDcanaccuratelyextractweakfeaturecomponentsofbearingfaultsasdesiredbytakingfulladvantageofbearingfaultfrequencyinformationandbandwidthinformation,andthealgorithmisrobusttonoise.KeywordsVariationalmodedecompositionRollingbearingfaultWeaksignalextractionOn-de⁃manddecomposition0引言滚动轴承作为旋转机械的重要支撑部件,起着承受载荷与传递运动的作用,在军工、现代工业、航空航天等领域被广泛应用。由于滚动轴承经常工作在高速、高温、重载或变载等恶劣环境,因此,容易发生疲劳剥落、磨损及腐蚀等现象[1]5-6,导致其成为诱发旋转机械发生故障的重要因素。因此,研究滚动轴承故障微弱特征提取方法,...