第46卷第1期2023年2月电子器件ChineseJournalofElectronDevicesVol.46No.1Feb.2023项目来源:国网山西省电力公司科技项目(520531200004)收稿日期:2021-08-04修改日期:2021-12-15PredictionMethodofPowerStealingBasedonRegressionConvolutionalNeuralNetworkandLoadChaosModel*JINHaigang*,XIEZhengang,RENFeng(StateGridShanxiElectricPowerCompany,TaiyuanShanxi030002,China)Abstract:Accuratecalculationoflinelossandextractionofusers’electricityconsumptioncharacteristicsarethekeytoaccuratemar-ketingstrategy.However,therandomnessofrenewableenergypowergeneration,disorderlycharginganddischargingofelectricvehicles,environmentalchangesandotherfactorsmaketheuser’selectricityconsumptionbehavioreasilymutate,whichleadstothechaoticandrandomcharacteristicsofuser’selectricityconsumptiondatainthestationarea,andcannoteffectivelydetectuser’selectricitystealingbehavior.Inordertosolvethisproblem,atime-seriescorrelationchaoticmodelofpowerconsumptionforstationareausersisestab-lished,andthecharacteristicsofpowerstealingloadsamplesandnormalsamplesareextracted.Theregressionconvolutionalneuralnet-workisusedtotrainandlearnthepowerstealingsamplesandnormalsamples,andtheenhancedfeatureclassificationlearnerisob-tained,soastorealizethepowerconsumptionpredictionforpowerstealingusers.Throughthetestandanalysisofthepowerconsump-tiondataofanactualpowercompany,itshowsthatthecalculationresultsoftheproposedmethodhavehighaccuracy.Keywords:regressionconvolutionneuralnetwork;load;chaos;stealingelectricity;forecastEEACC:7220;8150doi:10.3969/j.issn.1005-9490.2023.01.038基于回归卷积神经网络和负荷混沌模型的窃电预测方法*靳海岗*,谢振刚,任峰(国网山西省电力公司,山西太原030002)摘要:精确地计算台区线损、提取用户用电特征实现窃电预测,是精准营销策略制定的关键。然而,台区可再生能源发电的随机性、电动汽车充放电无序性、环境变化等因素使用户用电行为极易突变,导致台区用户用电数据呈现混沌随机特性,无法有效检测用户窃电行为。对此,建立了台区用户用电的时序相关混沌模型,并提取窃电负荷样本与正常样本的特征,使用回归卷...