数据采集与处理测控技术2023年第42卷第1期收稿日期:2021-12-23基金项目:山西省重点研发项目(高新技术领域)(201803D121102)引用格式:凌德森,王晓凯,朱涛.基于自适应时序分解的空气污染物浓度预测[J].测控技术,2023,42(1):83-91.LINGDS,WANGXK,ZHUT.PredictionofAirPollutantConcentrationBasedonAdaptiveTimeSeriesDecomposition[J].Measurement&ControlTechnology,2023,42(1):83-91.基于自适应时序分解的空气污染物浓度预测凌德森,王晓凯*,朱涛(山西大学物理电子工程学院,山西太原030006)摘要:为准确、有效地预测空气污染物浓度,建立了基于自适应完整集成经验模态分解(CEEMDAN)和排列熵(PE)的门控循环单元(GRU)空气污染物预测模型。首先利用CEEMDAN算法对非线性信号的自适应分解能力将原始序列分解为一组不同频率、复杂度的固有模态函数(IMF)和一个残差分量(REC),其次根据PE算法将复杂度相近的IMF分量和REC一起进行重新组合,最后将重组后的子序列分别使用GRU模型进行预测,并将子序列预测结果相加得到最终预测结果。实验结果表明,基于CEEMDAN-PE-GRU模型预测的误差明显低于其他模型,验证了该模型对空气污染物浓度预测的有效性。关键词:空气污染物浓度预测;自适应完整集成经验模态分解;排列熵;门控循环单元;神经网络中图分类号:TP391文献标志码:A文章编号:1000-8829(2023)01-0083-09doi:10.19708/j.ckjs.2022.03.248PredictionofAirPollutantConcentrationBasedonAdaptiveTimeSeriesDecompositionLINGDe-sen,WANGXiao-kai*,ZHUTao(CollegeofPhysicsandElectronicEngineering,ShanxiUniversity,Taiyuan030006,China)Abstract:Inordertoaccuratelyandeffectivelypredicttheconcentrationofairpollutants,agatedrecirculationunit(GRU)airpollutantpredictionmodelbasedcompleteensembleempiricalmodedecompositionwithadap-tivenoise(CEEMDAN)andpermutationentropy(PE)isestablished.Firstly,theCEEMDANdecompositionalgorithmisusedtodecomposethenonlinearsignaladaptively,andtheoriginalsequenceisdecomposedintoasetofintrinsicmodefunctions(IMF)ofdifferentfrequenciesandcomplexityandaresidualdifferencecompo-nent(REC),andthenaccordingtothePEalgorithm,theIMFcomponentsandresidualcomponentswithsimi-larcomplexityarerecombined.Finally,thereorganizedsub-sequencesarer...