《电视技术》第46卷第12期(总第565期)67PARTS&DESIGN器件与设计文献引用格式:黄炜,朱映韬,陈冬杰,等.基于稀疏卷积的非对称特征聚合点云压缩算法[J].电视技术,2022,46(12):67-71,76.HUANGW,ZHUYT,CHENDJ,etal.Sparseconvolutionbasedasymmetricfeatureaggregationalgorithmforpointcloudcompression[J].VideoEngineering,2022,46(12):67-71,76.中图分类号:TP311.1文献标识码:ADOI:10.16280/j.videoe.2022.12.015基于稀疏卷积的非对称特征聚合点云压缩算法黄炜1,朱映韬1,陈冬杰2,王宝土2*,陈建1,2(1.福州大学先进制造学院,福建泉州362200;2.福州大学物理与信息工程学院,福建福州350108)摘要:当前基于深度学习的点云压缩算法存在局部特征学习不足的问题,点云庞大的数据量也限制了网络规模。为了保障重建质量的同时合理控制计算复杂度,提出一种基于稀疏卷积的非对称特征聚合点云压缩算法,设计非对称特征聚合编解码网络、逐通道稀疏残差卷积提升率失真性能。经实验验证,相较于现有的G-PCC、V-PCC和Learned-PCGC算法,所提算法的BD-Rate分别减少88%,46%,40%以上,BD-PSNR分别增加8.9dB,2.4dB,1.8dB以上。关键词:点云压缩;自编码器;稀疏卷积;非对称特征聚合SparseConvolutionBasedAsymmetricFeatureAggregationAlgorithmforPointCloudCompressionHUANGWei1,ZHUYingtao1,CHENDongjie2,WANGBaotu2*,CHENJian1,2(1.CollegeofAdvancedManufacturing,FuzhouUniversity,Quanzhou362200,China;2.CollegeofPhysicsandInformationEngineering,FuzhouUniversity,Fuzhou350108,China)Abstract:Currentdeeplearning-basedpointcloudcompressionalgorithmssufferfrominsufficientlocalfeaturelearning,andthehugedatavolumeofpointcloudsalsolimitsthenetworksize.Inordertoguaranteethereconstructionqualitywhilereasonablycontrollingthecomputationalcomplexity,asparseconvolutionbasedasymmetricfeatureaggregationpointcloudcompressionalgorithmisproposed,andasymmetricfeatureaggregationcodecnetworkandchannel-wisesparseresidualconvolutionaredesignedtoimprovetheratedistortionperformance.ItisexperimentallyverifiedthatcomparedwiththeexistingG-PCC,V-PCCandLearned-PCGC,theBD-Rateisreducedbymorethan88.7%,46.7%and40.9%,respectively,andtheBD-PSNRisincreasedbymorethan8.99dB,2.42dBand2.36dB,...