2023年第4期基于深度子领域自适应的滚动轴承故障诊断张晓(重庆交通大学机电与车辆工程学院,重庆400074)摘要:由于工况不同引起的数据分布差异造成滚动轴承故障诊断效果不佳,提出基于深度子领域自适应(DeepSubdomainAdaptionNetwork,DSAN)的滚动轴承故障诊断方法。首先对滚动轴承振动信号进行连续小波变换,构造时频图来描述其故障特征。其次,将数据映射到深度神经网络中提取特征,并在特征空间中对两个领域的特征进行对齐,通过特征对齐减少两个领域间的特征差异,完成不同工况下的滚动轴承故障诊断。为了验证上述方法的有效性,在滚动轴承数据集进行了实验验证。关键词:滚动轴承;故障诊断;领域自适应;不同工况中图分类号:TH133.33文献标识码:A文章编号:1674-957X(2023)04-0070-03FaultDiagnosisofRollingBearingBasedonAdaptiveDepthSubdomainZhangXiao(SchoolofElectromechanicalandVehicleEngineering,ChongqingJiaotongUniversity,Chongqing400074)Abstract:Duetothedifferenceofdatadistributioncausedbydifferentworkingconditions,thefaultdiagno-siseffectofrollingbearingisnotgoodRollingbearingfaultdiagnosisofDeepSubdomainAdaptionNetwork(DSAN).Firstly,therollingbearingvibrationsignalistransformedbycontinuouswavelet,andthetime-fre-quencygraphisconstructedtodescribeitsfaultcharacteristics.Secondly,thedatawasmappedtothedeepneu-ralnetworktoextractfeatures,andthefeaturesofthetwofieldswerealignedinthefeaturespace.Thefeaturedif...